Как называется устройство для взаимосвязи одной ЭВМ с другими? Общие сведения об эвм Общие сведения и архитектура пэвм

Общие сведения и архитектура ПЭВМ.

Краткая характеристика основных узлов ПЭВМ.

Программное обеспечение ПЭВМ.

Общие сведения о MS Windows. Структура и основные элементы.

5. Программа «Проводник». Возможности и приёмы работы.

Работа с файлами и папками.

7. Папка «Мой компьютер».

8. Папка «Корзина».

Ярлыки, контекстное и главное меню.

Структура окна текстового процессора.

Фрагменты текста (символ, слово, строка, абзац, страница) и работа с ними.

Ввод текста.

Редактирование документа.

Форматирование абзацев.

Подготовка текста к печати и печать.

Общие сведения об Excel.

Построение таблицы.

Редактирование таблицы.

Ввод формул.

Адресация ячеек.

Использование функций.

Построение диаграмм. Редактирование диаграмм.

Решение оптимизационных задач в Excel.

Использование встроенного макрорекодера для решения нестандартных

Задач в Excel.

Алгоритмизация и программирование в Visual Basic и Visual Basic for

Applications. Создание простейших Windows-приложений.

Примерный перечень вопросов к зачету

1. Общие сведения и архитектура персональных электронно-вычислительных машин (ПЭВМ).

Общие сведения об ЭВМ.

Персональная ЭВМ это небольшая по размерам и стоимости универсальная цифровая микро-ЭВМ, предназначенная для индивидуального пользования.
Термин "персональные" призвано подчеркнуть, что вычислительная
машина предназначена для индивидуального пользования. Первенство в создании персональной ЭВМ связывается с фирмой МITS, которая сконструировалав 1974 году систему ALTAIR 8800.
В СССР первые персональные компьютеры появились в 1982 году

История ЭВМ насчитывает вот уже более полутора столетий. У истоков электронно-вычислительной техники стояли такие известные инженеры и исследователи, как Ч.Беббидж, А.Лавлейс (дочь Ч.Байрона), Дж. Буль, Ф.М.Слободской, В.Я.Слонимский, И.Штоффель, Ю.М.Дьяков, П.Л. Чебышев, Г.Холлерит, Атанасов, Айткен, др. Первая ЭВМ, обладающая всеми компонентами современного компьютера (промежуточной внутренней памятью, программным обеспечением, проч. - речь ждет о машине «EDSAC», изобретенной Дж.Эккертом и Дж.Моучли) была создана в 1947 г. в Пенсильванском университете (Англия). С тех пор сменилось уже три поколения ЭВМ, каждое из которых отличалось от другого целым набором технических характеристик. А именно:

  • Своей элементной базой; (1)
  • быстродействием; (2)
  • объемом оперативной памяти; (3)
  • математическим обеспечением;
  • внешними устройствами (4) , (5) , проч.

Большинство ЭВМ работает на основе двоичной системы счисления . (7) Двоичной называется такая система счисления, где есть только две цифры - ноль и единица.

Дело в том, что электронные системы, в которых электрический ток может находиться в двух состояниях (или он есть в цепи, или его нет), наиболее просты и надежны. Вместе с тем даже с помощью двух цифр - 0 и 1 - можно записывать числа любой величины, складывать их, умножать и делить.

Однако современные программисты, конечно же, не пользуются при написании своих программ двоичным кодом. Обычно они используют т.н. языки программирования - набор универсальных команд, легко усваиваемых

Взаимодействие пользователя ЭВМ с операционными системами построено по принципу диалога. Практически это выглядит так: пользователь набирает на клавиатуре соответствующую команду - операционная система выполняет его инструкцию. Такой способ «общения» пользователя и ЭВМ ненагляден и недостаточно удобен, т.к. пользователь не имеет возможности корректировать свои действия. Поэтому программисты часто, наряду с операционными системами, вводят в память ЭВМ и т.н. «программы-оболочки». Функция этих программ состоит в том, чтобы выводить на экран монитора ЭВМ описания действий, которые производят операционные системы. С помощью «программ-оболочек» можно просматривать содержащиеся в памяти компьютера каталоги программ, копировать программы, запускать их на выполнение, др. (9)

ПЭВМ, как и любая другая вычислительная машина, является не чем иным, как «слепым» исполнителем программ, которые и придают компьютеру всю привлекательность.

Под программой понимают описание, воспринимаемое ЭВМ и достаточное для решения на ней определенной задачи. Для составления программ используют искусственные языки, называемые языками программирования. ЭВМ, как правило, непосредственно воспринимает и выполняет программы, написанные только на одном из языков программирования, который при этом является машинным языком данной ЭВМ.

Архитектура вычислительной машины (Архитектура ЭВМ , англ. Computer architecture ) - концептуальная структура вычислительной машины , определяющая проведение обработки информации и включающая методы преобразования информации в данные и принципы взаимодействия технических средств и программного обеспечения.

Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ) (обычно объединяемые в центральный процессор), память, внешняя память, устройства ввода и вывода. Схема устройства такой ЭВМ представлена на рис. 1. Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком. Так, накопитель на магнитных дисках относится к внешней памяти, а клавиатура – устройство ввода, дисплей и печать – устройства вывода.

2. Краткая характеристика основных узлов ПЭВМ.

Основными узлами ЭВМ являются:

Центральный процессор (ЦП)

(ЦП) = (УУ) + (АЛУ)

Оперативная память (ОЗУ)

Постоянное запоминающее устройство (ПЗУ)

Внешняя память (ВЗУ)

Устройства Ввода (УВв)

Устройства Вывода (УВыв)

Все устройства ЭВМ подсоединены к единой ИНФОРМАЦИОННОЙ

Узлы ЭВМ классифицируются на:
1. комбинационные - это узлы, выходные сигналы которых определяются только сигналом на входе, действующим в настоящий момент времени (дешифратор). Выходной сигнал дешифратора зависит только от двоичного кода, поданного на вход в настоящий момент времени. Комбинационные узлы называют также автоматами без памяти.
2. последовательностные (автоматы с памятью) - это узлы, выходной сигнал которых зависит не только от комбинации входных. сигналов, действующих в настоящий момент времени, но и от предыдущего состояния узла (счетчик).
3. программируемые узлы функционируют в зависимости от того, какая программа в них записана. Например, программируемая логическая матрица (ПЛМ), которая в зависимости от прожженной в ней программы может выполнять функции сумматора, дешифратора, ПЗУ. ШИНЕ

3. Программное обеспечение ПЭВМ.

Под ПО в узком смысле понимается просто совокупность программ. В широком смысле в ПО (наряду с программами) включают различные языки, процедуры, правила и документацию, необходимые для использования и эксплуатации программных продуктов.

ПО ПЭВМ по функциональному признаку традиционно делится на системное и прикладное.

Системным называется ПО, используемое для разработки и выполнения программных продуктов, а также для предоставления пользователю ЭВМ определенных услуг. Оно является необходимым дополнением к техническим средствам ПЭВМ. Без СПО машина по сути безжизненна.

Прикладным называют ПО, предназначенное для решения определенной целевой задачи или класса таких задач. К этим задачам относятся производство вычислений по заданному алгоритму, подготовка того или иного текстового документа и т. п.

Операционные системы являются неотъемлемым обязательным дополнением ПЭВМ, организуя выполнение программ и взаимодействие пользователя с компьютером.

Другие компоненты СПО являются факультативными. Их состав определяется потребностями и желаниями пользователя.

Сервисные системы расширяют возможности ОС, предоставляя пользователю, а также выполняемым программам набор дополнительных услуг. Некоторые сервисные системы таковы, что изменяют облик ОС до неузнаваемости, а поэтому иногда называются операционными системами. Сказанное имеет отношение в особенности к интерфейсным системам.

Гораздо менее однородной группой системных программных средств являются инструментальные системы. Объединяет их то, предназначены для разработки ПО, хотя часть из них может применяться и для решения прикладных задач. Использование большинства инструментальных систем связано с составлением программ. поэтому они могут считаться системами программирования. Однако собственно к системам программирования традиционно относят такие системы, с помощью которых можно запрограммировать и решить любую задачу, допускающую алгоритмическое решение. Иными словами, системы программирования обладают универсальностью. Другие же типы инструментальных систем являются специализированными в том смысле, что они служат для создания ПО определенного функционального назначения. При этом эффективность разработки ПО по сравнению с использованием для этой же цели универсальных инструментальных средств возрастает.

Системы технического обслуживания предназначены для облегчения тестирования оборудования и поиска неисправностей. Они являются инструментом специалистов по эксплуатации аппаратной части компьютеров в данной книге не рассматриваются.

4. Общие сведения о MS Windows. Структура и основные элементы.

Современный Windows - это операционная система, управляющая работой персонального компьютера. Windows имеет удобный графический пользовательский интерфейс. В отличие от старой операционной системы DOS с текстовым интерфейсом, Windows не требует знания команд операционной системы и их точного ввода с клавиатуры. Подавляющее большинство операций по управлению работой персонального компьютера выполняются манипулятором мышь над графическими объектами Windows, либо короткими комбинациями клавиш (горячими клавишами) на клавиатуре.

На сегодняшний день на рынке программного обеспечения одно из главных мест занимают операционные системы семейства Windows. Эти продукты ориентированы на использование современных компьютеров и прикладных программных средств. Они предоставляют людям различных профессий удобное средство общения с компьютером.

Наиболее значительными преимуществами Windows-систем являются следующие:

· Графический интерфейс пользователя . В отличие от ранее принятых понятий и методов общения (через команды и имена файлов), вWindows используется существенно иной подход к управлению программами. Здесь пользователь работает с графическими образами на экране монитора.

· Единство интерфейса . Для работы в среде Windows было создано множество приложений, и все они разработаны в соответствии с единым стандартом. Все приложения похожи между собой в части управления и общения с пользователем. Это дает возможность пользователю, получив навыки работы с одним приложением, легко освоить работу с другим. Кроме того, программные продукты, созданные с помощью одних Windows-приложений, полностью воспринимаются другими приложениями.

· Многозадачный режим работы . При работе в Windows пользователь может одновременно запустить несколько программ (задач), что дает возможность, не завершая работы в одном приложении, воспользоваться услугами другого.

Пользовательский интерфейс – это методы и средства взаимодействия человека с аппаратными и программными средствами компьютера.
Стартовый экран Windows представляет собой системный объект, называемый рабочим столом.

Рабочий стол - это графическая среда, на которой отображаются объекты и элементы управления Windows. На рабочем столе можно видеть значки (пиктограммы), ярлыки и панель задач (основной элемент управления). При запуске Windows на рабочем столе присутствуют, как минимум, три значка: Мой компьютер, Сетевое окружение, Корзина . На рабочем столе могут быть расположены и другие значки. Его можно использовать и как временное хранилище своих файлов, но по окончании работы в учебном классе они должны быть либо удалены, либо перемещены в собственные папки.

Значки являются графическим изображением объектов и позволяют управлять ими. Значок- это графическое представление объекта в свернутом виде, соответствующее папке, программе, документу, сетевому устройству или компьютеру. Значки, как правило имеют метки - надписи, которые располагаются под ними. Щелчок левой кнопкой мыши по значку позволяет выделить его, а двойной щелчок – открыть (запустить) соответствующее этому значку приложение.

Ярлык является указателем на объект. Ярлык – это специальный файл, в котором содержится ссылка на представленный им объект (информация о месте расположения объекта на жестком диске). Двойной щелчок мыши по ярлыку позволяет запустить (открыть) представляемый им объект. При его удалении сам объект не стирается, в отличие от удаления значка. Достоинство ярлыков в том, что они обеспечивают быстрый доступ к объекту из любой папки, не расходуя на это памяти. Отличить ярлык от значка можно по маленькой стрелке в левом нижнем углу пиктограммы.

Панель задач является инструментом для переключения между открытыми папками или приложениями. В левой части панели задач расположена кнопка "Пуск"; в правой - панель индикации. На самой панели изображаются все открытые в данный момент объекты.

Кнопка "Пуск" открывает Главное меню . С его помощью можно запустить все программы, зарегистрированные в операционной системе, получить доступ ко всем средствам настройки операционной системы, к поисковой и справочной системам и другим функциям.

Центральным понятием Windows является окно. Окно – структурный и управляющий элемент пользовательского интерфейса, представляющий собой ограниченную рамкой прямоугольную область экрана, в которой может отображаться приложение, документ или сообщение.

Выше на рисунке показан рабочий стол Windows с открытым Главным меню, окном текстового процессора Word, значками и ярлыками и некоторыми свернутыми на панели задач документами.

Из других понятий Windows следует отметить понятия каталога и папки.

Каталог – поименованная группа файлов, объединенных по какому-либо признаку.

Папка – понятие, которое используется в Windows вместо понятия каталог в более ранних операционных системах. Понятие папка имеет расширенное толкование, так как наряду с обычными каталогами папки представляют и такие объекты, как Мой компьютер, Проводник, Принтер, Модем и др.

5. Программа «Проводник». Возможности и приёмы работы.

Программа Проводник – средство, дающее возможность пользователю видеть в иерархической форме структуру, размещение папок и быстро переходить к какому-либо объекту (папке, файлу, ярлыку), а также выполнять ряд действий с папками и файлами.

Вызвать Проводник можно из Главного меню командой Пуск/Программы/Проводник или выбрав пункт Проводник в контекстных меню кнопки Пуск или папки Мой компьютер. Из окна папки Проводник можно вызвать следующим образом: выделить вложенную папку и дать команду Файл/Проводник. На экран будет выведено окно Проводника с открытой выбранной папкой.

Окно Проводника состоит из двух панелей. Левая панель показывает информационные ресурсы, представленные в виде иерархического дерева. Правая панель показывает содержимое текущей папки.

Процесс перемещения по папкам с целью открытия необходимой называют навигацией.Проводник является инструментом поиска – навигатором. Чтобы эффективно работать в средеПроводника , нужно знать приемы навигации в нем.

Если папка содержит в себе другие папки, то в дереве на левой панели она обозначена значком +. Для отображения структуры вложенных в нее папок нужно щелкнуть по этому значку. Когда папка раскроется, знак + сменится на -. Для сворачивания папки нужно щелкнуть по значку -.

Для просмотра содержимого папки надо щелкнуть на имени или значке папки в дереве. На левой панели значок сменится на . В правой панели будет выведено содержимое папки. Также можно открыть папку двойным щелчком по ее значку или имени в правой панели. При этом в правой панели появится содержимое папки, а в левой панели значок этой папки сменит значок открытой папки.

Чтобы открыть объект, находящийся внутри папки, надо выполнить одно из следующих действий:

  • Выполнить двойной щелчок на значке объекта;
  • Выделить объект щелчком мыши и дать команду Файл/Открыть ;
  • В контекстном меню объекта выбрать пункт Открыть .

Если объект – программа, то Windows запустит ее. Если объект – документ, то Windows запустит программу, с помощью которой он создавался, и откроет в ее окне документ. Если объект – ярлык, то это равносильно открытию объекта, для которого этот ярлык создавался.

Проводник позволяет не только просматривать существующие объекты, но и создавать новые.

В среде Проводника можно выполнять различные действия с объектами (копирование, переименование, удаление и т.д.). Для этого объекты должны быть выделены. Одиночный объект выделяется щелчком мыши по его имени или значку.

6. Работа с файлами и папками.

Файл - это именованная последовательность байтов произвольной длины.

Основные принципы построения ЭВМ были сформулированы американским учёным Джоном фон Нейманом в 40-х годах 20 века:

    1. Любую ЭВМ образуют три основные компоненты: процессор, память и устройства ввода-вывода (УВВ).
  • набор команд по обработке (программы);
  • данные подлежащие обработке.

3. И команды, и данные вводятся в память (ОЗУ) – принцип хранимой программы .

4. Руководит обработкой процессор, устройство управления (УУ) которого выбирает команды из ОЗУ и организует их выполнение, а арифметико-логическое устройство (АЛУ) проводит арифметические и логические операции над данными.

5. С процессором и ОЗУ связаны устройства ввода-вывода (УВВ).

Архитектура современных персональных компьютеров основана на магистрально-модульном принципе . Информационная связь между устройствами компьютера осуществляется через системную шину (другое название - системная магистраль).

Шина - это кабель, состоящий из множества проводников. По одной группе проводников - шине данных передаётся обрабатываемая информация, по другой - шине адреса - адреса памяти или внешних устройств, к которым обращается процессор. Третья часть магистрали - шина управления , по ней передаются управляющие сигналы (например, сигнал готовности устройства к работе, сигнал к началу работы устройства и др).

Системная шина характеризуется тактовой частотой и разрядностью. Количество одновременно передаваемых по шине бит называется разрядностью шины . Тактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота – в мегагерцах.

Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождается адресом , передаваемым по адресной шине. Это может быть адрес ячейки памяти или адрес периферийного устройства. Необходимо, чтобы разрядность шины позволила передать адрес ячейки памяти. Таким образом, словами разрядность шины ограничивает объем оперативной памяти ЭВМ, он не может быть больше чем , где n – разрядность шины. Важно, чтобы производительности всех подсоединённых к шине устройств были согласованы. Неразумно иметь быстрый процессор и медленную память или быстрый процессор и память, но медленный винчестер.

Ниже представлена схема устройства компьютера, построенного по магистральному принципу:

В современных ЭВМ реализован принцип открытой архитектуры, позволяющий пользователю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости её модернизацию. Конфигурацией компьютера называют фактический набор компонентов ЭВМ, которые составляют компьютер. Принцип открытой архитектуры позволяет менять состав устройств ЭВМ. К информационной магистрали могут подключаться дополнительные периферийные устройства, одни модели устройств могут заменяться на другие.

Аппаратное подключение периферийного устройства к магистрали на физическом уровне осуществляется через специальный блок - контроллер (другие названия - адаптер, плата, карта). Для установки контроллеров на материнской плате имеются специальные разъёмы - слоты .

Программное управление работой периферийного устройства производится через программу - драйвер , которая является компонентой операционной системы. Так как существует огромное количество разнообразных устройств, которые могут быть установлены в компьютер, то обычно к каждому устройству поставляется драйвер, взаимодействующий непосредственно с этим устройством.

Связь компьютера с внешними устройствами осуществляется через порты – специальные разъёмы на задней панели компьютера. Различают последовательные и параллельные порты. Последовательные (COM – порты) служат для подключения манипуляторов, модема и передают небольшие объёмы информации на большие расстояния. Параллельные (LPT - порты) служат для подключения принтеров, сканеров и передают большие объёмы информации на небольшие расстояния. В последнее время широкое распространение получили последовательные универсальные порты (USB), к которым можно подключать различные устройства.

Минимальная конфигурация компьютера включает в себя: системный блок, монитор, клавиатуру и мышь.

Если вас интересует, как называется устройство, предназначенное для взаимосвязи ЭВМ с другими компьютерами, то эта статья определенно вам поможет. Устройство для взаимосвязи одной ЭВМ с другими называется адаптером или сетевой картой. Что собой представляет данный элемент? Как он работает? Какие функции выполняет сетевая карта? В рамках данной статьи вы получите ответ на эти и многие другие вопросы.

Адаптер: что это такое?

Адаптером называют периферийное устройство компьютера, которое работает непосредственно со средой передачи данных. Именно благодаря адаптеру или при использовании другого коммуникационного оборудования осуществляется налаживание связей с другими ПК. Данное устройство решает задачи обеспечения надежности обмена двоичными данными, которые представлены в виде соответствующих ЭМ сигналов. Передача этих данных осуществляется при использовании внешних линий связи. Так как адаптер является контроллером компьютера, он работает под управлением соответствующих драйверов операционной системы. В зависимости от реализации разграничение функций между ними может меняться.

Развитие адаптеров

Вы уже знаете, что устройство для связи одной ЭВМ с другими называется адаптером. Рассмотрим, как же развивалась данная технология. Адаптеры в первых локальных сетях вместе с сегментом коаксиального кабеля брали на себя весь спектр коммуникационного оборудования. Именно благодаря им и реализовывалось взаимодействие между компьютерами. Тогда использовалось непосредственное взаимодействие между различными ЭВМ. Такая технология до сих пор используется. Однако в большинстве современных стандартов предусмотрено еще наличие целого ряда специальных коммуникационных устройств, таких как коммутатор, мост, концентратор и маршрутизатор. Эти устройства забирают на себя часть функций, связанных с управлением потоком данных.

Ошибочные предположения

Довольно часто можно услышать или прочитать о том, что устройством для связи одной ЭВМ с другими является процессор. Это утверждение является не верным. Устройство для связи одной электронно-вычислительной машины с другой называется сетевой картой или адаптером, и никак иначе. Достоверно неизвестно, откуда пошло такое заблуждение.

Функция оформления и кодирования данных

Функции адаптера состоят в том, что информацию необходимо передавать в виде кадра, который имеет определенный формат. Под кодированием при этом понимают представление информации при помощи определенных сигналов таким образом, чтобы они могли быть приняты на другой стороны. При этом заключенный в них смысл не должен теряться. Давайте остановимся на данном вопросе более детально. В кадре имеется несколько служебных полей. К таким полям относится адрес ПК, которому необходимо передать данные, и контрольная сумма каждого кадра. По контрольной сумме и будет делаться вывод о корректности предоставленной информации. Про кодирование можно сказать, что смысл данной процедуры заключается в преодолении помехи и предоставлении принимающей аппаратуре возможности распознавания полученной информации. Имеются также и некоторые техническое особенности. Так, например, при использовании в локальной сети широкополосных кабелей адаптерами не используется модуляция сигнала, так как это необходимо только тех случаях, когда передача идет по узкополосным линиям связи. В качестве таковых могут выступать телефонные каналы тональной частоты.

Функция получения доступа

Следующая функция применяется только во взаимодействии со средой трансляции данных. Она используется только в тех случаях, когда требуется получить доступ по определенному алгоритму. Это необходимо из-за эксплуатации разделяемой среды трансляции данных. Однако сегодня наметилась определенная тенденция отказа от такого подхода в пользу индивидуальных каналов связи ЭВМ с коммуникационными устройствами сети. Подобный принцип используется в проводной телефонии.

Функция синхронизации и преобразования

Для предоставления информации в читаемом виде необходимы преобразование и синхронизация. Благодаря адаптеру, информация может быть преобразована из последовательной формы в параллельную, и наоборот. Это необходимо сделать по той простой причине, что для упрощения выполнения задачи синхронизации данные передаются постепенно, бит за битом. В компьютере вся информация перемещается побайтно. Что же касается синхронизации, то можно сказать, что она необходима для того, чтобы поддерживать бесконфликтное взаимодействие между приемником и передатчиком информации. Данная задача успешно решается адаптером благодаря использованию специальных методов кодирования, где не используется дополнительная шина с тактовыми синхросигналами. Благодаря использованию такого метода можно легко обеспечить периодическое изменение состояния передаваемого сигнала. Помимо проблем с синхронизацией на уровне битов, адаптер также решает и аналогичные задачи относительно кадров и байтов.

Технические особенности

Адаптеры различают по используемой технологии и внутренней шине данных. Если говорить о шине, то здесь встречаются следующие типы: EISA, ISA, MCA, PCI. С сетевыми технологиями все довольно неоднозначно. Обычно один адаптер поддерживает работу только по одной сетевой технологии. Достигается это благодаря использованию различных сред трансляции данных. Одной из наиболее популярных технологий является Ethernet. Она спокойно поддерживает коаксиальный, оптоволоконный кабели и неэкранированную витую пару. Если адаптер может поддерживать только одну среду, то тогда могут использоваться трансиверы и конверторы. Что собой представляют данные устройства?

Конверторы и трансиверы

Трансиверы по-другому называют приемопередатчиками. Они представляют собой часть сетевого адаптера и являются оконечными устройствами, которые выходят на кабель. Следует отметить, что первоначально трансиверы располагались на кабелях. Потом было принято решение, что наиболее удобным является размещение именно на адаптере. Вместо трансивера можно было использовать конвертор. Он используется для согласования информации при использовании различных сред трансляции данных. В качестве примера можно привести локальную домашнюю сеть, в которой используется коаксиальный кабель и витая пара.

Заключение

Задачу можно считать выполненной. Основная терминология и конструкционные особенности адаптеров разъяснены. Теперь у вас не должно возникать вопросов о названии устройства, используемого для взаимосвязи одного ПК с другими. Кроме того, в данной статье мы рассмотрели, какие функции выполняются адаптерами, какой путь развития они прошли и как они могут быть улучшены. Предоставленной информации недостаточно для более глубокого изучения данного вопроса, но для начального изучения вопросов, связанных с построением физической передачи данных, она вполне подойдет.

  • Архитектура пк. Магистрально-модульный принцип построения , 244.23kb.
  • Тест «Основные устройства икт» 1 вариант Вкакой строке перечислен минимальный набор , 31.4kb.
  • Примерный план реферата Назначение устройства и принцип его построения Структурная , 15.15kb.
  • Программы общего назначения в решении медицинских задач. История развития средств вычислительной , 59.78kb.
  • 1. пу. Классификация. Назначение , 1046.98kb.
  • Тема: "Основные устройства ЭВМ, их функции и взаимосвязь в процессе работы. Магистрально - модульный принцип построения ПЭВМ."

    Цель урока: Объяснить учащимся общий принцип организации хранения информации в памяти ЭВМ и обмена информацией между устройствами компьютера, а также программный принцип работы ЭВМ.

    1. Внутренняя архитектура компьютера.

    Персональные компьютеры - это универсальные устройства для хранения, обработки и передачи информации.

    Архитектура ЭВМ - это общее описание структуры и функций ЭВМ. Архитектура не несет в себя описание деталей технического и физического устройств а компьютера.

    Основные компоненты архитектуры ЭВМ:

    • процессор,
    • внутренняя (основная) память,
    • внешняя память,
    • устройства ввода, устройства вывода.
    Самым массовым типом ЭВМ в наше время является персональный компьютер (ПК). ПК - это малогабаритная ЭВМ, предназначенная для индивидуальной работы пользователя, оснащенная удобным для пользователя (дружественным) программным обеспечением.

    Практически все модели современных ПК имеют магистральный тип архитектуры (в том числе самые распространенные в мире IBM PC и Apple Macintosh).

    Схема устройства компьютеров, построенных по магистральному принципу.

    Процессор Внутренняя память

    Периферийные устройства

    Память компьютера

    Память ПК делится на внутреннюю и внешнюю.

    Внутренняя память ПК включает в себя оперативное запоминающее устройство (ОЗУ) и постоянное запоминающее устройство (ПЗУ).

    ОЗУ -быстрая, полупроводниковая, энергозависимая память. В ОЗУ хранятся исполняемая в данный момент программа и данные, с которыми она непосредственно работает. Это значит, что когда вы запускаете какую-либо компьютерную программу, находящуюся на диске, она копируется в оперативную память, после чего процессор начинает выполнять команды, изложенные в этой программе. Часть ОЗУ, называемая “видеопамять”, содержит данные, соответствующие текущему изображению на экране. При отключении питания содержимое ОЗУ стирается. Быстродействие (скорость работы) компьютера напрямую зависит от величины его ОЗУ, которое в современных

    компьютерах может доходить до 4 Гбайт. В первых моделях компьютеров оперативная память составляла не более 1 Мбайт. Современные прикладные программы часто требуют для своего выполнения не менее 4 Мбайт ОЗУ; в противном случае они просто не запускаются.

    ОЗУ - это память, используемая как для чтения, так и для записи информации. При отключении электропитания информация в ОЗУ исчезает (энергозависимость).

    ПЗУ - быстрая, энергонезависимая память. ПЗУ - это память, предназначенная только для чтения. Информация заносится в нее один раз (обычно в заводских условиях) и сохраняется постоянно (при включенном и выключенном компьютере). В ПЗУ хранится информация, присутствие которой постоянно необходимо в компьютере.

    В ПЗУ находятся:

    • тестовые программы, проверяющие при каждом включении компьютера правильность работы его блоков;
    • программы для управления основными периферийными устройствами -дисководом, монитором, клавиатурой;
    • информация о том, где на диске расположена операционная система.
    Основная память состоит из регистров. Регистр - это устройство для временного запоминания информации в оцифрованной (двоичной) форме. Запоминающим элементом в регистре является триггер - устройство, которое может находиться в одном из двух состояний, одно из которых соответствует запоминанию двоичного нуля, другое - запоминанию двоичной единицы. Триггер представляет собой крошечный конденсатор-батарейку, которую можно заряжать множество раз. Если такой конденсатор заряжен - он как бы запомнил значение “1”, если заряд отсутствует - значение “О”. Регистр содержит несколько связанных друг с другом триггеров. Число триггеров в регистре называется разрядностью компьютера. Производительность компьютера напрямую связана с разрядностью, которая бывает равной 8, 16, 32 и 64.

    Процессор

    Процессор - центральное устройство компьютера.

    Назначение процессора:

    1. управлять работой ЭВМ по заданной программе;
    2. выполнять операции обработки информации.
    Микросхема, реализующая функции центрального процессора персонального компьютера, называется микропроцессором. Нередко название компьютера ассоциируется с типом процессора, например “Пентиум” (Pentium).

    Микропроцессор выполнен в виде сверхбольшой интегральной схемы. Термин “большая” относится не к размерам, а к количеству электронных компонентов, размещенных на маленькой кремниевой пластинке. Их число достигает нескольких миллионов. Чем больше компонентов содержит микропроцессор, тем выше производительность компьютера. Размер минимального элемента микропроцессора в 100 раз меньше диаметра человеческого волоса. Микропроцессор штырьками вставляется в специальное гнездо на системной плате, которое имеет форму квадрата с несколькими рядами отверстий по периметру.

    Возможности компьютера как универсального исполнителя по работе с информацией определяются системой команд процессора. Эта система команд представляет собой язык машинных команд (ЯМК). Из команд ЯМК составляются программы управления работой компьютера. Отдельная команда определяет отдельную операцию (действие) компьютера. В ЯМК существуют команды, по которым выполняются арифметические и логические операции, операции управления последовательностью выполнения команд, операции передачи данных из одних устройств памяти в другие и пр.

    Состав процессора:

    • устройство управления (УУ),
    • арифметико-логическое устройство (АЛУ),
    • регистры процессорной памяти.
    УУ управляет работой всех устройств компьютера по заданной программе. (Функцию устройства управления можно сравнить с работой дирижера, управляющего оркестром. Своеобразной “партитурой” для УУ является программа.)

    АЛУ - вычислительный инструмент процессора; это устройство выполняет арифметические и логические операции по командам программы.

    Регистры - это внутренняя память процессора. Каждый из регистров служит своего рода черновиком, используя который процессор выполняет расчеты и сохраняет промежуточные результаты, программы.

    Важнейшей характеристикой процессора является тактовая частота - количество операций, выполняемых им за 1 секунду (Гц). Процессор 8086, произведенный фирмой Intel для персональных компьютеров IBM, мог выполнять не более 10 млн. операций в секунду, т. е. его частота была равна 10 МГц. Тактовая частота процессора 80386 составляла уже 33 МГц, а современный процессор Pentium совершает в среднем 100 млн. операций в секунду.

    Кроме того, каждый конкретный процессор может работать не болев чем с определенным количеством оперативной памяти. Для процессора 8086 это количество составляло всего лишь 1 Мбайт, для процессора 80286 оно увеличилось до 16 Мбайт, а для Pentium составляет 1 Гбайт. Кстати, в компьютере, как правило, имеется гораздо меньший объем оперативной памяти, чем максимально возможный для его процессора.

    Процессор и основная память находятся на большой плате, которая называется материнской. Для подключения к ней различных дополнительных устройств (дисководов, манипуляторов типа мыши, принтеров и т. д.) служат специальные платы - контроллеры. Они вставляются в разъемы (слоты) на материнской плате, а к их концу (порту), выходящему наружу компьютера, подключается дополнительное устройство.

    Примеры характеристик микропроцессоров:

    1. МП Intel-80386: адресное пространство -232 байта = 4 Гб, разрядность 32, тактовая частота - от 25 до 40 МГц
    2. МП Pentium: адресное пространство - 232 байта = 4 Гб, разрядность - 64Тб, тактовая частота - от 60 до 100 МГц.
    Информационная связь между устройствами компьютера осуществляется через информационную магистраль (другое название - общая шина).

    Магистраль - это кабель, состоящий из множества проводов.

    По одной группе проводов (шина данных) передается обрабатываемая информация, по другой (шина адреса) - адреса памяти или внешних устройств, к которым обращается процессор. Есть еще третья часть магистрали - шина управления, по ней передаются управляющие сигналы (например, сигнал готовности устройства к работе, сигнал к началу работы устройства и др.).

    Количество одновременно передаваемых по шине бит называется разрядностью шины . Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождается адресом, передаваемым по адресной шине (как письмо сопровождается адресом на конверте). Это может быть адрес ячейки в оперативной памяти или адрес (номер) периферийного устройства.

    В современном ПК реализован принцип открытой архитектуры . Этот принцип позволяет менять состав устройств (модулей) ПК. К информационной магистрали могут подключаться дополнительные периферийные устройства, одни модели устройств могут заменяться на другие. Возможно увеличение внутренней памяти, замена микропроцессора на более совершенный. Аппаратное подключение периферийного устройства к магистрали осуществляется через специальный блок - контроллер (другое название - адаптер). Программное управление работой устройства производится через программу - драйвер. которая является компонентой операционной системы. Следовательно, для подключения нового периферийного устройствах компьютеру необходимо использовать соответствующий контроллер и установить в ОС подходящий драйвер.

    Основные периферийные устройства

    Периферийные устройства - это устройства, с помощью которых информация или вводится в компьютер, или выводится из него. Они также называют внешними или устройствами ввода-вывода данных. Условно их можно разделить на основные, без которых работа компьютера практически невозможна, и прочие, которые подключаются при необходимости. К основным устройствам относятся клавиатура, монитор и дисковод.

    Клавиатура служит для ввода текстовой информации. Внутри нее имеется микросхема - шифратор, - которая преобразует сигнал от конкретной клавиши в соответствующий данному знаку двоичный код.

    Монитор (дисплей) в зависимости от конкретной программы работает в одном из двух режимов - текстовом или графическом. В текстовом режиме экран состоит из отдельных участков - знакомест. В каждое знакоместо может быть выведен один символ. В области видеопамяти в этот момент находятся данные, характеризующие каждое знакоместо, - цвет символа, цвет фона, яркость и т. д. В графическом режиме экран состоит из отдельных точек - пикселей. Данные в видео памяти характеризуют цвет конкретного пикселя - так создается изображение. Количество пикселей, из которых состоит экран монитора, называется разрешающей способностью монитора. Характеристики распространенных в настоящее время мониторов приведены в таблице:


    Монитор

    Текстовый режим

    Графический режим

    CGA

    80х25, 16 цветов

    640х200, 2 цвета; 20х200, 4 цвета

    EGA

    80х25 16 цветов; 80х43, 16 цветов

    640х350, 16 цветов

    VGA

    80х25, 16 цветов; 80х50, 16 цветов

    640х480, 16 цветов

    SVGA

    80х50, 16 цветов

    640х480, 256 цветов; 800х600, 16 цветов

    Дисковод. Диски

    Для сохранения информации ее записывают на специальные жесткие и гибкие магнитные диски. Запись основана на способности некоторых материалов, содержащих в своей основе железо, сохранять на кольцеобразные дорожки диска в виде двух по-разному намагниченных участков. Дорожки состоят из отдельных частей - секторов по 512 байт. Дорожки и сектора нумеруются.

    Накопитель на магнитных дисках (дисковод) состоит из мотора, служащего для вращения диска и специальной читающей и записывающей магнитной головки.

    Жесткий магнитный диск (винчестер) размещается внутри компьютера. Объем жесткого диска может составлять от 10 Мбайт до 1 Гбайта (и это не предел). Компьютер может иметь пакет (несколько) винчестеров.

    Гибкие магнитные диски (дискеты) бывают двух типов: 3-дюймовые (3,5" - 8 мм) и 5-дюймовые (5,25" - 133 мм). Тип определяется диаметром диска, находящегося внутри пластиковой коробки. Сама пластиковая коробка выполняет функцию защиты от внешних воздействий. Объем дискеты зависит от плотности записи на дорожке, которая бывает одинарной (SD - Single Density), двойной (DD - Double Density), четырехкратной (QD - Quadrupty Density) и высокой (HD - High Density), а также от количества рабочих сторон на дискете (односторонняя (Single Sided - SS и двухсторонняя (Double Sided - DS)). Максимальный объем дискеты обычно обозначен в ее маркировке. В следующей таблице приведены наиболее употребляемые в настоящее время типы дискет:


    3-дюймовые

    5-дюймовые

    Дискеты

    DS/DD

    DS/HD

    DS/DD

    DS/HD

    Объем

    720 Кбайт

    1,44Мбайт

    360 Кбайт

    1,2Мбайт

    Сразу после покупки дискету нельзя использовать. Сначала ее нужно отформатировать с помощью соответствующей компьютерной программы.

    Форматирование (инициализация) - процесс нарезки дорожек на дискете, разбиение дорожек на сектора, проставление на них специальных меток. Любую дискету можно отформатировать на максимально возможный для нее объем или на любой меньший объем, предназначенный для данного типа дискет. Современные программы форматирования (например, FFOR-МАТ) позволяют разметить дискету на нестандартный объем (747 Кбайт, 1,49 Мбайт и т. п.). Для того чтобы компьютер затем мог работать с таким типом дискет, следует загрузить специальную программу поддержки (например, PU_1700). Форматировать можно и бывшую в работе дискету, при этом все данные на ней уничтожаются.

    В процессе эксплуатации на поверхности дисков могут появиться испорченные, так называемые сбойные участки. Информация, записанная на сбойный участок, не читается. Поэтому следует периодически проверять диски специальной программой типа NDD. Программа выявляет дефектные участки и помечает их таким образом, что при записи на диск эти участки автоматически пропускаются. Кроме того, программа может восстановить данные, попавшие на сбойный участок.

    Прочие периферийные устройства

    1. Принтер
      В отличие от основных периферийных устройств те устройства, которые мы назвали прочими, подключаются к компьютеру в зависимости от конкретных нужд пользователя.
      Принтер - устройство для вывода на бумагу текстов и графических изображений. В настоящее время используется несколько типов принтеров.
      • Матричный принтер. Принцип действия такого принтера основан на том, что печатающая головка, содержащая металлические иголки, движется вдоль печатаемой строки. Иголки в нужный момент ударяют по бумаге через красящую ленту - изображение формируется из отдельных точек. Красящая лента может быть намотанной на катушки (как в пишущей машинке) или уложенной в специальную коробку (картридж). Матричные принтеры - наиболее дешевые. Качество печати у них, как правило, невысокое. Скорость печати в среднем - 1 минута на страницу. Матричные принтеры - не цветные.
      • Струйный принтер. В принтерах этого типа мельчайшие капли краски выдуваются на бумагу через крошечные сопла. Эти принтеры обеспечивают достаточно высокое качество печати. Скорость печати в среднем - 1 минута на страницу. Существуют цветные и не цветные струйные принтеры.
      • Лазерный принтер. В таких принтерах частицы краски переносятся со специального красящего барабана на бумагу посредством электрического поля. Качество печати - высокое. Скорость печати в среднем - от 4 до 15 страниц за 1 минуту. Существуют цветные и не цветные лазерные принтеры.
    2. Плоттер (графопостроитель) служит для печати на бумагу чертежей. Изображение создается двигающимся по листу пером с цветной тушью. Обычный плоттер может выводить чертеж на лист размером до А1 (841х594 мм). Но существуют большие плоттеры, выводящие изображение на лист с размерами до 3х3 м. Скорость печати для листа А1 средней наполненности - 1 час.
    3. Сканер предназначен для ввода в компьютер представленных в печатном виде текстовых и графических данных. Имея сканер, можно не утруждать себя, создавая рисунок с помощью графического редактора, а быстро набросать изображение от руки на листе бумаги и ввести в компьютер с помощью этого устройства. Аналогично можно ввести и рукописный текст, который при наличии программы распознавания будет автоматически преобразован в напечатанный вид. Сканеры бывают ручными (которыми проводят сверху по листу) и планшетными (лист кладется внутрь сканера).
    4. Стример - это устройство для резервного копирования данных винчестера на случай их возможной потери (вирус, поломка). Если использовать для этой цели дискеты, потребуется не только много дискет, но и много времени. Стример быстро записывает данные на магнитную ленту в специальной кассете. Новейшие разработки позволяют использовать для этой цели обычные видеокассеты.
    5. Устройства управления курсором служат для быстрого перемещения курсора по экрану.
      • Наиболее распространенным среди них является манипулятор типа “мышь” (или просто “мышь”). Внутри него имеется шар, который при движении мыши катится по поверхности и передает свое движение специальным роликам. Сигналы от роликов поступают в компьютер.
      • Трекбол напоминает мышь, перевернутую вверх ногами. В движение приводят шар, закрепленный на роликах. Трекбол обычно используется в переносных компьютерах типа notebook.
      • Джойстик представляет собой рукоятку с кнопками и применяется, как правило, для игр и тренажеров.
    6. Отдельные компьютеры могут связываться друг с другом посредством телефонной сети. Пользователь, подключивший свой компьютер в такую сеть, получает доступ практически к неограниченному объему информации. Компьютерные сигналы - это сигналы постоянного тока. Телефонная сеть их передавать не может. Для преобразования компьютерных сигналов в сигналы, способные передаваться по телефонной сети (иными словами, для их модуляции - преобразования в комбинацию звуковых сигналов различной частоты), применяется специальное устройство, называемое модем (сокращение слов модулятор-демодулятор).
    Мультимедийные компоненты

    Привод CD-ROM функционально аналогичен дисководу, но предназначен для чтения компакт-дисков. Компакт-диск (CD-ROM - Compact-Disk-Read-Only Memory), подобно дискете, служит для хранения различных данных и аудио видеоинформации, представленной в двоичном виде. Однако если на магнитных дисках двоичные числа представлены в виде двух по-разному намагниченных участков, то здесь использован другой принцип. Спиральная дорожка состоит из одинаковых по протяженности, но разных по высоте участков. Для создания такой формы (“вспучивания”) нужные участки дорожки “нагревают” лучом лазера. При чтении данных используется луч лазера меньшей мощности. Когда такой луч падает на “вспученный” участок, он отражается от его поверхности и попадает в светоприемник. На низкий участок луч не попадает, а следовательно, не отражается. Таким образом, сигналы в светоприемнике представлены как “ 1 ” - наличие сигнала и “О” - его отсутствие. Компакт-диски выполнены из алюминия или золота и залиты в пластик. На одном компакт-диске может быть записано до 640 Мбайт информации.

    Домашнее задание.

    1. Найти и выписать следующие термины:
      • интерфейс
      • программа
      • микропроцессор
      • контроллер (адаптер)
      • электронная плата.
      • системная магистраль (шина)

    Проверочная работа

    Выберите правильный ответ из предложенных .

    1. Информация о том, в каком месте на диске находится операционная система, расположена в
      1. регистрах ОЗУ;
      2. регистрах процессора.
    2. Разрядность компьютера - это
      1. число регистров в компьютере;
      2. число регистров в триггере;
      3. число триггеров в компьютере;
      4. число триггеров в регистре.
    3. УУ является частью
      1. процессора;
      2. оперативной памяти.
    4. Логические операции над данными производит
      1. оперативная память;
    5. Периферийные устройства подключаются к материнской плате через
      1. регистры;
      2. слоты;
      3. контроллеры;
      4. внешние устройства.
    6. С 4 Мбайтами памяти может работать процессор
      1. 8086;
      2. 80286;
      3. 80386.
    7. Тактовую частоту 100 МГц имеет процессор
      1. 80386SX;
      2. 80386DX;
      3. 486SX;
      4. 486DX;
      5. Pentium.
    8. К основным периферийным устройствам относятся:
      1. устройства управления курсором, клавиатура, монитор, дисковод;
      2. монитор, клавиатура, дисковод;
      3. дисковод, принтер, монитор;
      4. монитор, дисковод, принтер, клавиатура.
    9. 256 цветов в графическом режиме имеет монитор
      1. SVGA.
    10. Размер сектора диска составляет
      1. 128 байт;
      2. 256 байт;
      3. 512 байт;
      4. 1024 байт.
    11. 3-дюймовую дискету марки DS/DD можно отформатировать максимум на
      1. 360 Кбайт;
      2. 720 Кбайт;
      3. 1,2 Мбайт;
      4. 1,44 Мбайт.
    12. 3-дюймовую дискету марки DS/HD можно отформатировать максимум на
      1. 360 Кбайт;
      2. 720 Кбайт;
      3. 1,2 Мбайт;
      4. 1,44 Мбайт.
    13. Картридж с красящей лентой используется в
      1. струйном принтере;
      2. стримере;
      3. сканере;
      4. матричном принтере;
      5. графопостроителе.
    14. Наихудшее качество печати у
      1. струйного принтера;
      2. матричного принтера;
      3. лазерного принтера;
      4. графопостроителя.
    15. Для резервного копирования данных на винчестере предназначен
      1. сканер;
      2. модем;
      3. трекбол;
      4. плоттер;
      5. стример.
    16. На обычном компакт-диске можно записать данных максимум
      1. 460 Мбайт;
      2. 620 Мбайт;
      3. 640 Мбайт;
      4. 1064 Мбайт;
      5. 1024Мбайт.

    Как называется устройство для взаимосвязи ЭВМ с другими компьютерами? Что ж, если этот вопрос крутится в голове, значит, правильно делаете, что читаете данную статью. Так вот, устройство для взаимосвязи одной ЭВМ с другими - адаптер (иными словами, Что он собой представляет? Как работает? Какие функции он выполняет? На все эти вопросы можно будет найти ответ в рамках данной статьи.

    Что такое адаптер

    Так называют которое непосредственно работает со средой передачи данных. Благодаря нему, прямо или с использованием иного происходит налаживание связей с другими компьютерами.

    Этим устройством решаются задачи обеспечения надежности обмена двоичными данными, что представлены в виде соответствующих электромагнитных сигналов. Их передача осуществляется при использовании внешних линий связи. Поскольку адаптер является контроллером компьютера, то работает он под управлением соответствующего драйвера используемой операционной системы. Разграничение функций между ними может меняться, в зависимости от реализации.

    Развитие адаптеров

    Итак, мы уже знаем, что устройство для взаимосвязи одной ЭВМ с другими - это адаптер. Теперь давайте кратко проследим, как развивалась данная технология.

    В первых локальных сетях адаптеры, вместе с сегментом коаксиального кабеля, брали на себя весь спектр коммуникационного оборудования. Благодаря ним и организовывали взаимодействие компьютеров. Тогда использовалось непосредственное взаимодействие между различными электронно-вычислительными машинами.

    Такая технология до сих пор применяется, но большинством современных стандартов предусмотрено ещё и наличие целого ряда специальных коммуникационных устройств (например, мост, коммутатор, концентратор или маршрутизатор). Они перебирают на себя часть функций относительно управления потоком данных.

    Ошибочные предположения

    Часто можно услышать или прочитать, что устройство для взаимосвязи одной ЭВМ с другими - процессор. Знайте, что это не верно. Устройство для взаимосвязи одной ЭВМ с другими называется адаптером или сетевой картой, но никак иначе! Откуда пошло такое заблуждение, достоверно неизвестно, но если кто-то ошибается, лучше будет поправить его.

    Функции оформления и кодирования данных

    Функции адаптера заключаются в том, что информацию необходимо передавать в виде кадра, имеющего определённый формат. При этом под кодированием понимают представление информации с помощью определённых сигналов таким образом, чтобы они могли быть приняты на другой стороне, но при этом не должен теряться и заключенный в них смысл.

    Давайте более детально остановимся на этом. В кадр включено несколько служебных полей. К ним относится адрес компьютера, которому необходимо передать данные и каждого кадра. По ней будет делаться вывод о корректности предоставленной информации. Про кодирование можно сказать, что его смысл заключается в преодолении помехи и предоставлении принимающей аппаратуре возможности распознавания полученных данных.

    Также есть некоторые технические нюансы. Так, при использовании в локальной сети широкополосных кабелей адаптерами не используется модуляция сигнала. Поскольку это необходимо, только когда передача идёт по узкополосным линиям связи (в качестве таковых могут приводиться телефонные каналы тональной частоты).

    Функция получения доступа

    Следующая функция используется при взаимодействии со средой трансляции данных. Применяется в тех случаях, когда необходимо получить доступ по определённому алгоритму.

    Это необходимо из-за эксплуатации разделяемой среды трансляции данных. Но наметилась тенденция на отказ от такого подхода в пользу индивидуальных каналов связи ЭВМ с коммуникационными устройствами сети (подобно тому, что делается в проводной телефонии).

    Функция преобразования и синхронизации

    Преобразование и синхронизация необходимы для предоставления данных в читаемом виде. Так, благодаря адаптеру, информация может быть преобразована из последовательной формы в параллельную и наоборот. Это необходимо из-за того, что для упрощения выполнения задачи синхронизации (а также для удешевления линий связи) данные передаются постепенно - один бит за другим. Для сравнения - в компьютере информация перемещается побайтно.

    Относительно синхронизации можно сказать, что она необходима, чтобы поддерживать постоянное бесконфликтное взаимодействие приемника и передатчика данных. Эта задача адаптером успешно решается, благодаря специальным методам кодирования, где не используется дополнительная шина с тактовыми синхросигналами.

    Благодаря такому методу запросто обеспечивается периодическое изменения состояния сигнала, что передаётся. Кроме проблем с синхронизацией на уровне битов, адаптером решаются аналогичные задачи и относительной байтов и кадров.

    Технические особенности

    Различают адаптеры по внутренней шине данных и по используемой технологии. Так, если говорить о первом случае, то здесь могут быть следующие типы:

    • EISA;

    С сетевыми технологиями не всё так однозначно. Обычно один адаптер поддерживает работу по одной из них. Но, несмотря на это, информация без проблем передается. Это достигается благодаря тому, что используются разные среды трансляции данных. Для примера, одна из самых популярных технологий - Ethernet - может спокойно поддерживать коаксиальный и оптоволоконный кабели или неэкранированную витую пару.

    Если адаптером может поддерживаться только одна среда, то используют конверторы и трансиверы. Что собой представляют эти устройства?

    Трансиверы и конверторы

    Трансиверы также называют приемопередатчиками. Они являются частью сетевого адаптера и представляют собой его оконечное устройство, которое выходит на кабель. Хотя, следует отметить, что первоначально они были расположены на кабелях (если рассматривать первый стандарт Ethernet), но потом было принято решение, что более удобным является размещение именно на адаптере.

    Вместо трансивера можно применять конвертор. Он занимается согласованием информации при использовании различных сред трансляции данных. Как пример можно привести локальную домашнюю сеть, где используется витая пара с коаксиальным кабелем.

    Заключение

    Что ж, задача выполнена - терминология и особенности адаптеров разъяснены. Теперь не должно быть вопросов о том, как называется устройство для взаимосвязи одной ЭВМ с другими компьютерами. Кроме этого, мы рассмотрели, какие функции выполняются адаптерами, какой путь развития они прошли, а также как могут быть улучшены без кардинальных изменений. Для углубленного изучения темы предоставленной информации недостаточно, но как начало изучения построения физической передачи данных, она будет вам полезна.