Чипсеты семейства NVIDIA nForce. Чипсеты семейства NVIDIA nForce Дизайн и впечатления

Смотрите в этой статье:

Видеокарты на базе NVIDIA GeForce RTX 2070, которым посвящен данный материал, являются младшими моделями из уже представленных на данных момент графических адаптеров нового поколения с архитектурой NVIDIA Turing.

Если не брать во внимание очень специфическую NVIDIA Titan RTX стоимостью $2500, то пользовательские видеокарты с архитектурой NVIDIA Turing представлены семейством NVIDIA GeForce RTX 2080 Ti, RTX 2080 и RTX 2070. Это видеокарты высокого класса, а через некоторое время планируется появление и более простых устройств типа RTX 2060.

Смотрим на характеристики

Графические процессоры для новых видеокарт Turing выполняются по более «тонкому» 12-нанометровому техпроцессу. Но, по слухам, этот техпроцесс не является чем-то принципиально новым, а представляет собой лишь чуть доработанную версию 16-нанометрового техпроцесса, который используется в предшественниках.

Для удобства сравнения характеристики новых GeForce RTX 2080 Ti, RTX 2080 и RTX 2070 и предшественников GeForce GTX 1080 Ti, GTX 1080 и GTX 1070 мы свели их в одну таблицу.

От поколения к поколению видеокарт NVIDIA можно наблюдать рост стоимости видеокарт. Но если ранее он был довольно плавным, то в данном случае адаптеры NVIDIA Turing значительно превзошли предшественников по цене.

За что платим?

Отчасти такое повышение можно объяснить увеличившейся сложностью новых GPU. Обратите внимание, что они имеют сильно возросшее количество транзисторов и значительно более высокую площадь кристалла. Соответственно, можно предположить, что себестоимость таких кристаллов оказывается выше.

Есть некоторые девиации по значениям частот GPU. Память теперь новая. Вместо GDDR5X и GDDR5 видеокарты RTX получили GDDR6.

Но примечательно, что объем памяти в новом поколение видеокарт остался на том же уровне, что и у предшественников.

Очень важно, что появились совершенно новые ядра RT и тензорные ядра. Именно этим обусловлен такой рост числа транзисторов и площади кристалла GPU.

Трассировка лучей

Поколение видеокарт RTX 2080 Ti, RTX 2080, RTX 2070 на базе архитектуры Turing сама NVIDIA называет революционной и связывает это с аппаратной поддержкой трассировки лучей в реальном времени.

Для этого внедрены упоминаемые выше RT-ядра. NVIDIA считает это настолько важным, что привычную приставку GTX в новых видеокартах даже заменили на RTX, где RT - Ray Tracing (трассировка лучей).

Данной технологии на презентации видеокарт нового поколения было уделено чуть ли не главное внимание.

Если упрощенно, то с Ray Tracing связаны новые эффекты отражений на объектах (в том числе взаимных), отражений света и прохождения лучей сквозь объекты. При этом лучи могут иметь реалистичное преломление, наложение и т. д. Ray Tracing также позволяет использовать более реалистичные смягченные тени и формировать правдоподобное освещение.

Это действительно очень важное нововведение для индустрии, но, как ни парадоксально, именно с технологией Ray Tracing и связывают довольно холодный прием новых видеокарт пользователями.

Новые RT-ядра сделали кристалл более крупным и дорогим, а что пользователи получают взамен?

На момент выхода видеокарт RTX не было ни единой игры, которая бы обладала поддержкой Ray Tracing. Сейчас ситуация меняется, но очень медленно.

К примеру, попробовать Ray Tracing вообще в какой-либо игре стало возможно совсем недавно с выходом Battlefield V.

Как оказалось, картинка в Battlefield V с эффектами меняется не так и кардинально. Улучшения есть, но совсем не скажешь, что получаешь принципиально новый уровень восприятия.

А вот вычислительные ресурсы Ray Tracing «подъедает» существенно. При активации трассировки лучей производительность может падаем более чем вдвое.

В результате, даже с дорогущей топовой NVIDIA GeForce RTX 2080 Ti, уровень FPS при Full HD-разрешении, максимальных настройках качества с использованием Ray Tracing не всегда сможет удовлетворить требовательного геймера.

А что тогда говорить о более простых RTX 2080, RTX 2070 и более высоких разрешениях?

Получается, что на данный момент игр с Ray Tracing практически нет, визуально разница в изображении с эффектами RT не такая кардинальная, а активация трассировки приводит к большому падению уровня FPS.

Для пользователей Ray Tracing в реальном времени пока является лишь потенциально перспективной технологией. Посмотрим, как будет развиваться ситуация.

DLSS-сглаживание, тензорные ядра и искусственный интеллект

Вдобавок к совершенно новым RT-ядрам в видеокартах RTX появились и тензорные ядра, предназначенные для рассчетов ИИ и нейросетей. Они работают в связке c RT-ядрами, но тензорные ядра могут использоваться и для других функций.

На базе их работы реализован новый метод сглаживания - DLSS (Deep Learning Super Sampling). Используется сниженное разрешение рендеринга, но за счет ИИ и тензорных ядер видеокарта преобразовывает изображение в более качественное, «додумывая» новые детали.

В зависимости от особенностей реализации за счет этого можно добиться увеличения производительности, повышения качества изображения или того и другого одновременно.

Опять-таки, как и в случае с Ray Tracing, для работы DLSS необходима поддержка со стороны игр. Указывается, что несколько десятков готовящихся к выходу игр будут поддерживать DLSS-сглаживание.

Одним из немногих тестов, где уже сейчас можно проверить DLSS, стал бенчмарк Final Fantasy XV Benchmark. Если в системе установлена видеокарта GeForce RTX, в настройках появляется соответствующий пункт, позволяющий активировать DLSS.

По нашим тестам, активация DLSS привела к существенному увеличению производительности.

Качество изображения с использованием DLSS и с обычным TAA-сглаживанием в данном приложении сопоставимо. Вы можете самостоятельно сравнить кадры с DLSS и с TAA.

DLSS
TAA

Что еще нового?

Продолжает совершенствоваться технология автоматического повышения частоты GPU. В видеокартах NVIDIA RTX используется уже четвертое поколение GPU Boost.

Добавлена возможность ручной корректировки алгоритма работы разгона. Но куда более интересно, что впервые появилась функция автоматического разгона.

Если ранее для определения предельной частоты GPU требовалось экспериментировать, запускать различные игры, приложения, то сейчас процесс может быть сильно упрощен.

В приложениях типа MSI AfterBurner доступен новый пункт Nvidia Scanner. Нажав всего одну кнопку, через минут 15 автоматических тестов вы получите измененную кривую частот/напряжений GPU, соответственно, с более высокими значениями частот.

В наших тестах для всех видеокарт RTX 2070 мы проверяли такой автоматический разгон. Конечно, для получения еще более высоких результатов оверклокинга придется все же проводить более сложный разгон «вручную».

К видеокартам RTX можно подключить сразу два монитора с разрешением 8K. Максимальная кадровая частота будет составлять 60 Гц у обоих устройств вывода изображения.

Порты DisplayPort теперь соответствуют версии DisplayPort 1.4a, а HDMI - HDMI 2.0b. Обратите также внимание на наличие разъема USB Type-C прямо на видеокарте. Он предназначен для новых VR-шлемов.

Впрочем, этот порт может использоваться для любых устройств с поддержкой USB Type-C.

Вполне ожидаемо, что была проведена работа с различными видеокодеками. Например, добавлена поддержка компрессии данных в формате H.265 (HEVC) в режиме разрешении , а также повышено качество кодирования. Учитывая, что сегодня видеокарты активно используются при видеомонтаже, это весьма актуально.

Возможность объединения нескольких видеокарт в одной системе теперь доступна только в видеокартах самого высокого класса. NVIDIA GeForce RTX 2070 такой функции лишены.

Участники теста

В одном тесте нам удалось собрать сразу четыре видеокарты на базе NVIDIA GeForce RTX 2070 от разных производителей.

Это модели ASUS ROG Strix GeForce RTX 2070 OC edition, Gigabyte AORUS GeForce RTX 2070 XTREME 8G, Inno3D GeForce RTX 2070 Gaming OC X2 и MSI GeForce RTX 2070 GAMING Z 8G.

Все они имеют значительные отличия от референсных RTX 2070, получили повышенные частоты и используют фирменные системы охлаждения.

Сравнительная таблица характеристик

Кодовый идентификатор модели ROG-STRIX-RTX2070-O8G-GAMING GV-N2070AORUS X-8GC N20702-08D6X-2511683 -
Поставщик Представ-во ASUS Представ-во Gigabyte Представ-во Inno3D Представ-во MSI
Цена, $ 796 742 675 725
Результаты измерений
Производительность 87,49 87,73 86,21 87,93
100 96,91 98,54 98,79
Производитетльнось/Цена 86,7 93,26 100 95,66
Технические характеристики
Чипсет NVIDIA GeForce RTX 2070 NVIDIA GeForce RTX 2070 NVIDIA GeForce RTX 2070 NVIDIA GeForce RTX 2070
Техпроцесс чипсета, нм 12 12 12 12
Тип и объем памяти, ГБ GDDR6, 8 GDDR6, 8 GDDR6, 8 GDDR6, 8
Конструкция системы охлаждения фирменная фирменная фирменная фирменная
Количество вентиляторов системы охлаждения 3 3 2 2
Количество занимаемых слотов 3 3 2 3
Субъективная оценка шумности охлаждения Отлично Отлично Хорошо Отлично
Номинальная частота GPU 1410 1410 1410 1410
Boost-частота GPU 1815 1815 1755 1830
Результирующая частота памяти, МГц 14000 14142 14000 14000
Шина памяти, бит 256 256 256 256
Требует дополнительного питания? да да да да
Тип разъема доп. питания 6pin+8pin 6pin+8pin 6pin+8pin 6pin+8pin
Количество выходов HDMI/DisplayPort/USB Type-C 2/2/1 3/3/1 1/3/1 2/2/1

ASUS ROG Strix GeForce RTX 2070 OC edition (ROG-STRIX-RTX2070-O8G-GAMING)

Представленная в тесте ASUS ROG Strix GeForce RTX 2070 OC edition на данный момент является самой мощной, в плане частоты GPU, и продвинутой среди всех видеокарт ASUS на базе RTX 2070 .

Она имеет традиционный для ASUS ROG Strix дизайн, который практически не изменился со времен прошлого поколения.

Устройство получилось довольно крупным и в системе займет три слота расширения.

Тут используется модифицированная плата с конфигурацией фаз питания 10+2 и фирменная система охлаждения с тремя вентиляторами.

Как заявляется, вентиляторы имеют специальную конструкцию, а внутренности защищены от пыли. Кстати, направление вращения всех вентиляторов одинаковое.

Массивный радиатор СО пронизан шестью тепловыми трубками. Подошва теплоприемника имеет особую обработку, которую ASUS называет технологией MaxContact.

При осмотре ASUS ROG Strix GeForce RTX 2070 OC edition (ROG-STRIX-RTX2070-O8G-GAMING) со всех сторон обнаруживаются любопытные детали.

На плате установлены сразу две микросхемы BIOS с немного измененными режимами работы платы. Один из них (Performance) предусматривает повышенную эффективность охлаждения, что достигается более высокими скоростями работы вентиляторов, а второй (Quiet) рассчитан на более тихую эксплуатацию. Выбор BIOS осуществляется специальным переключателем.

Кстати, полная остановка вентиляторов при малой нагрузке становится доступна только при использовании варианта BIOS с режимом Quiet.

На торце выведена специальная кнопка для быстрого отключения/включения подсветки. Это неплохое решение, когда надо погасить свечение без использования фирменного ПО.

Также на плате предусмотрена площадка для ручного измерения напряжения RAM, GPU, PLL и набор контактов для подключения светодиодной ленты и корпусных вентиляторов. Скорость вращения этих вентиляторов можно связать с температурой GPU. Это классная функция.

На одной из сторон ASUS ROG Strix GeForce RTX 2070 OC edition можно заметить контакты для подключения светодиодной ленты и корпусных вентиляторов

Частота памяти в данной модели соответствует референсной, а вот Boost-частота GPU повышена очень значительно - с 1620 до 1815 МГц.

В результате ASUS ROG Strix GeForce RTX 2070 OC edition находится среди лидеров теста по производительности. Превзойти Gigabyte AORUS GeForce RTX 2070 XTREME 8G и MSI GeForce RTX 2070 GAMING Z 8G по скорости не удалось, так как все три модели, включая ASUS, имеют похожие рабочие частоты. Уж очень сильные видеокарты участвуют в тесте.

Мониторинг работы ASUS ROG Strix GeForce RTX 2070 OC edition в приложении MSI Afterburner

При работе под нагрузкой в наших условиях температура GPU составила всего 57 ° C . Для всех тестов производительности и замера температуры использовался BIOS с режимом Performance.

Учитывая довольно высокое энергопотребление видеокарты, это просто великолепный результат. К слову, это самое низкое значение температуры среди всех тестируемых видеокарт на базе RTX 2070 в этом тесте.

Скорость вращения вентиляторов составила около 1600 об/мин. При работе видеокарта не будет создавать шумовой дискомфорт.

При использовании автоматического разгона с изначальными настройками максимальная частота GPU почти достигла отметки 2100 МГц.

ASUS ROG Strix GeForce RTX 2070 OC edition позволяет увеличить предел энергопотребления до 125%. Это самое высокое значение в тесте.

Система подсветки состоит из нескольких элементов с RGB-подсветкой на передней панели, светящимся логотипом ASUS ROG по боку и еще одним крупным логотипом, выведенным на заднюю пластину.

Работой подсветки, разумеется, можно управлять. Доступны ряд эффектов, а также возможность смены цвета в зависимости от температуры GPU.

Особенность: цвет свечения может меняться, но одновременно все элементы подсветки имеют один и тот же цвет.

Весьма неплохо, но сегодня уже есть и более продвинутые решения, в том числе и среди участников теста. Подсветка видеокарт Gigabyte AORUS и MSI оказалась еще более крутой.

Фирменное ПО ASUS по возможностям примерно представляет собой объединение MSI Afterburner и GPU-Z

ASUS ROG Strix GeForce RTX 2070 OC edition - это очень мощная видеокарта на базе RTX 2070 с просто-таки отличной по эффективности системой охлаждения.

Она находится среди лидеров по производительности, имеет ряд любопытных дополнительных функций в виде двух микросхем BIOS, контактов для вентиляторов корпуса и светодиодной ленты.

Но при всех своих достоинствах, ASUS ROG Strix GeForce RTX 2070 OC edition обладает и самой высокой стоимости среди других участников теста на базе RTX 2070.

Оценка ASUS ROG Strix GeForce RTX 2070 OC edition (ROG-STRIX-RTX2070-O8G-GAMING):

Отличная система охлаждения

Предел энергопотребления выше чем у других участников

Двойной BIOS

Контакты для подключения RGB светодиодных лент и вентиляторов корпуса

— самая высокая стоимость

— большие габариты

— сравнительно скромная комплектация

Если видеокарты ASUS ROG Strix в новом поколении выглядят почти также, как и в предыдущем, то MSI свою серию GAMING видоизменила существенно .

Узнаваемый дизайн с преобладанием красного цвета и вставками, напоминающими когти дракона, решили больше не использовать.

Модель хоть и не такая длинная, но широкая и в системе займет место трех слотов расширения.

MSI GeForce RTX 2070 GAMING Z 8 G (внимание на приставку Z в названии) выделяется более высокими частотами по сравнению с близнецами MSI GeForce RTX 2070 GAMING X 8 G и MSI GeForce RTX 2070 GAMING 8 G и является самой быстрой RTX 2070 у компании MSI на данный момент.

Плата типично для серии GAMING переработанная. Распаяна конфигурация фаз питания 8+2. СО состоит из двух вентиляторов и мощного радиатора с шестью тепловыми трубками.

Если присмотреться, то в каждом вентиляторе чередуются лопасти двух видов. Технология носит название TORX FAN 3.0. В сочетании с новым дизайном рассеивающих пластин радиатора это, по информации производителя, будет способствовать лучшей эффективности.

Система охлаждения и вправду оказалась очень эффективной.

Зафиксированная температура под нагрузкой - 66 °C. Но удивило другое. Данная температура держится при скорости вращения вентилятора всего 1100 об./мин.

В результате видеокарта работает очень тихо . По эффективности охлаждения MSI превзошла других участников кроме, пожалуй, ASUS ROG Strix GeForce RTX 2070 OC edition. Но с СО ASUS сравнивать сложно. С одной стороны, у конкурента более низкая температура, а с другой - это достигается при заметно более высоких оборотах вентиляторов.

Boost-частоте GPU видеокарты MSI GeForce RTX 2070 GAMING Z 8G составляет 1830 МГц. Это самое высокое значение среди всех участников теста. Но превосходство над ASUS ROG Strix GeForce RTX 2070 OC edition и Gigabyte AORUS GeForce RTX 2070 XTREME 8G совсем мизерное. У этих видеокарт данное значение составляет 1815 МГц.

Частота памяти, при этом, стандартная. Логично, что RTX 2070 GAMING Z 8G оказалась среди лидеров по производительности. При автоматическом разгоне максимальная частота доходит до отметки 2100 МГц.

Кривые зависимости частоты и напряжения графического процессора Характеристики MSI GeForce RTX 2070 GAMING Z 8G (данные приложения GPU-Z) со стандартными настройками (сверху) и после автоматического разгона

Доступный лимит энергопотребления - 111%.

Очень порадовала новая система подсветки данной видеокарты . Светящимися участками по периметру окружили вентиляторы. Подсвечивается и логотип на боку.

Все дело в том, как тут реализованы динамические эффекты. В некоторых режимах это, своего рода, цветовое шоу. Хотя тут и нет светящегося элемента на задней пластине данная подсветка MSI понравилась больше, чем решение у ASUS.

В комплекте с видеокартой поставляется дополнительная планка для более надежного крепежа видеокарты в корпусе. Видеокарта действительно увесистая, но, на наш взгляд, большой необходимости в такой планке нет. Вероятно, она не помешает, при транспортировке корпуса.

Планка прикручивается в корпусе компьютера ниже видеокарты после чего устройство опирается на эту планку через мягкие прокрадки

MSI GeForce RTX 2070 GAMING Z 8G отличается и высоким заводским разгоном, и отличной по эффективности системой охлаждения, и интересной новой подсветкой. Хорошая получилась модель.

Оценка MSI GeForce RTX 2070 GAMING Z 8G:

Отличная система охлаждения

Отключение вентиляторов при низкой нагрузке

Значительно повышенные частоты GPU

Продвинутая система RGB-подсветки

Дополнительная планка крепления в комплекте

— большие габариты

Gigabyte AORUS GeForce RTX 2070 XTREME 8G (GV-N2070AORUS X-8GC)

Даже по сравнению с другими крупными видеокартами в тесте Gigabyte AORUS GeForce RTX 2070 XTREME 8G оказывается еще массивнее.

Gigabyte AORUS GeForce RTX 2070 XTREME 8G слева

Но основной вклад в толщину устройства вносит не радиатор СО, а довольно любопытное размещение вентиляторов.

Они расположены немного внахлест. За счет этого, при умеренной длине, удалось разместить сразу три 100-миллиметровых вентилятора .

Gigabyte AORUS GeForce RTX 2070 XTREME 8 G является самой быстрой RTX 2070 у Gigabyte .

Boost частота составляет 1815 МГц, что, впрочем, сравнимо с тестируемыми ASUS ROG Strix GeForce RTX 2070 OC edition и MSI GeForce RTX 2070 GAMING Z 8G.

Любопытно, что заводской разгон получила и память. Во всех остальных видеокартах RTX 2070 данного теста частоты памяти соотвествуют референсным.

Но прибавка по памяти в случае с AORUS GeForce RTX 2070 XTREME 8G чисто номинальная и мало влияет на итоговую производительность. Частоту подняли со стандартной 14 000 до 14 140.

Производительность Gigabyte AORUS GeForce RTX 2070 XTREME 8G оказалась на уровне видеокарт MSI и ASUS.

Используя автоматический разгон максимальное значение частоты GPU составило около 2100. Что примерно повторяет результаты MSI и ASUS.

Кривые зависимости частоты и напряжения графического процессора Gigabyte AORUS GeForce RTX 2070 XTREME 8G со стандартными настройками (сверху) и после автоматического разгона

Доступный для изменения максимальный лимит энергопотребления - 109%.

Конфигурация фаз системы питания - 10+2.

В отличие от других участников, в конструкции системы охлаждения вместо полированной пластины или испарительной камеры используется вариант, когда сами тепловые трубки касаются GPU.

Всего тепловых трубок пять.

Производитель обращает отдельное внимание, что центральный вентилятор имеет другое направление вращения по сравнению с крайними. Указано, что это позволяет избежать турбулентности и увеличивает эффективность СО.

Умеет модель и останавливать вентиляторы при низкой нагрузке. На боковой панели, традиционно для Gigabyte, даже выведена подсвечиваемая надпись “Fan Stop”, которая загорается, когда вентиляторы бездействуют.

Как такая СО показала себя в деле?

Зафиксированные значения температуры и оборотов вентиляторов под нагрузкой составили 67 °C при 1700 об./мин. Очень неплохо, но, получается, что эффективность СО участвующих в тесте ASUS ROG Strix GeForce RTX 2070 OC edition и MSI GeForce RTX 2070 GAMING Z 8G немного выше.

Система подсветки в Gigabyte AORUS GeForce RTX 2070 XTREME 8G устроена очень необычно.

На краю одной из лопастей каждого вентилятора размещен RGB-диод. Этот диод может менять цвет в зависимости от того, в каком секторе круга он находится при вращении вентилятора . Получаемые эффекты впечатляют.

Видеокарта действительно способна привлечь немало внимания.

Дополнительно подсвечиваются логотипы, размещенные на лицевой, обратной сторонах и на боку видеокарты.

Из-за того, что подсветка AORUS GeForce RTX 2070 XTREME 8G связана с вращением вентиляторов обнаружились и не очень приятные особенности. Во-первых, эффекты с кольцами работают только при работающих вентиляторах. Во-вторых, заметно небольшое мерцание. Второй недостаток, впрочем, выражен не так существенно. Если видеокарта не находится постоянно в вашем поле зрения, неудобств не будет.

У видеокарты Gigabyte AORUS GeForce RTX 2070 XTREME 8G оказалось самое большое количество видеовыходов вреди других видеокарт на базе RTX 2070 в этом обзоре

В комплекте обнаружилась ножка для надежной фиксации видеокарты в корпусе. Да, видеокарта увесистая, но острой необходимости в такой дополнительной поддержке, на наш взгляд, нет.

К слову, уровень материалов и обработки у этой ножки просто изумительные.

Неужели такого рода аксессуары становится трендом для видеокарт высокого класса?

Резюмируя, можно сказать, что Gigabyte AORUS GeForce RTX 2070 XTREME 8G выделяется не только значительным заводским разгоном, но и довольно смелым дизайном в сочетании с любопытной системой подсветки.

Это очень достойный соперник для других мощнейших участников данного теста.

Оценка Gigabyte AORUS GeForce RTX 2070 XTREME 8G (GV-N2070AORUS X-8GC):

Эффективная система охлаждения

Отключение вентиляторов при низкой нагрузке

Значительно повышенные частоты GPU

Эффектная система RGB-подсветки

Дополнительная ножка крепления в комплекте

— большие габариты

— Эффекты системы подсветки зависят от того, вращаются вентиляторы или нет

Inno3D GeForce RTX 2070 Gaming OC X2 (N20702-08D6X-2511683)

Inno3D GeForce RTX 2070 Gaming OC X2 - это далеко не рядовая модель. Тут и заводской разгон GPU, и фирменная система охлаждения, и подсветка с RGB-элементами.

Но на фоне других видеокарт GeForce RTX 2070 из данного теста, а это оказались очень продвинутые модели, она выглядит скромнее.

Видеокарта от Inno3 D единственная в тесте занимает не три, а два слота расширения.

Радиатор содержит четыре тепловые трубки и обдувается парой вентиляторов.

Учитывая более скромный класс устройства, по эффективности охлаждения Inno3D GeForce RTX 2070 Gaming OC X2 ожидаемо уступила другим участникам теста.

Мониторинг работы Inno3D GeForce RTX 2070 Gaming OC X2 в приложении MSI Afterburner

Под нагрузкой температура составила 66 °C. Это более чем комфортный уровень, но обороты вентиляторов при этом оказались на уровне 2050 об/мин, что заметно выше, чем у представленных видеокарт ASUS, Gigabyte, MSI.

Соответственно, Inno3D GeForce RTX 2070 Gaming OC X2 работает не так тихо, но уровень ее шума большого дискомфорта создавать не должен.

Видеокарта умеет останавливать вентиляторы при низкой нагрузке, но делает это несколько своеобразно. Перед окончательной остановкой вентиляторы еще пару десятков раз раскручиваются от 0 до, примерно, 600 об./мин. Вполне возможно, что этот «баг» может быть решен в новой версии прошивки, хотя и сейчас существенной проблемой это не является.

На гистограмме видно, как вентиляторы перед полной остановкой некоторое время «пульсирует» со скоростью от 0 до 600 об/мин.

Boost-частота GPU повышена со стандартных 1620 до 1755 МГц. Это неплохой заводской разгон, но, опять-таки, конкуренты оказались уж слишком мощными и у них этот параметр еще выше.

Как результат, Inno3D GeForce RTX 2070 Gaming OC X2 немного уступила соперникам по производительности.

Если проанализировать полученную кривую частоты GPU/напряжения при автоматическом разгоне, то можно увидеть, что максимальная частота GPU примерно на 50 МГц ниже чем у других видеокарт RTX 2070 в тесте при заданных значениях напряжений.

Кривые зависимости частоты и напряжения графического процессора Inno3D GeForce RTX 2070 Gaming OC X2 со стандартными настройками (сверху) и после автоматического разгона

Подсветкой в Inno3D GeForce RTX 2070 Gaming OC X2 оснащены несколько элементов. На лицевой панели логотип Inno3D подсвечивается белым цветом. Зажигаются также и желтые вставки рядом с этим логотипом. А вот логотип Inno3D на боку может светиться уже любым цветом (RGB-подсветка).

Доступно управление подсветкой при помощи приложения.

Да, Inno3D GeForce RTX 2070 Gaming OC X2 несколько уступила соперникам в скорости и в эффективности системы охлаждения. Но для многих это все может быть запросто нивелировано тем, что Inno3 D GeForce RTX 2070 Gaming OC X2 отличается заметно более доступной стоимостью и по соотношению производительности и цены она переигрывает всех других участников данного теста .

А еще у Inno3D GeForce RTX 2070 Gaming OC X2 весьма продвинутая комплектация. Модель поставляется с игровым ковриком и ключами для тестов VRMark, 3DMark.

Оценка Inno3D GeForce RTX 2070 Gaming OC X2 (N20702-08D6X-2511683):

Наилучший баланс стоимости и производительности среди всех видеокарт на базе RTX 2070 в тесте

Отключение вентиляторов при низкой нагрузке

Заводской разгон GPU

Интересная комплектация

— сравнительно скромная подсветка

— странное поведение вентиляторов при переходе в режим остановки

Как мы тестировали видеокарты

Видеокарты работали с использованием изначальных настроек драйверов, оптимизированные игровые профили не применялись.

Видеокарты тестировались без разгона и без использования фирменных профилей (OC, Gaming, Silence и т. д.), которые иногда доступны при установке фирменного программного обеспечения.

Тестируемые видеокарты на базе RTX 20170 мы сравнивали с видеоадаптерами прошлого поколения на базе GTX 1080 и GTX 1080 Ti, в роли которых выступили MSI GeForce GTX 1080 GAMING X 8G и Gigabyte GeForce GTX 1080 Ti Gaming OC 11G.

В качестве тестовых приложений для определения производительности видеокарт мы использовали современные игры с поддержкой DirectX 11 и DirectX 12, которые имеют встроенные бенчмарки. Также в программу вошли популярные синтетические тесты 3DMark.

В каждой игре применялись максимальные или близкие к максимальным настройки графики. В играх мы использовали разрешение 2560×1440 и 3840×2160 пикс. (4K-разрешение). В 3DMark 11 видеокарты тестировались с предустановкой Extreme, а в 3DMark (2013) использовались тесты Fire Strike Extreme, Fire Strike Ultra и DirectX 12-тест Time Spy.

Отслеживание максимальной температуры GPU и энергопотребления системы (без монитора) производилось в игре Metro: Last Light. Именно в этой игре видеокарты, по наблюдениям, нагревались наиболее интенсивно и происходило максимальное энергопотребление.

Сама система эксплуатировалась вне корпуса ПК (открытый стенд) при температуре в помещении около 21 °C. Уровень шума, создаваемый работой систем охлаждения видеокарт, оценивался субъективно.

Итоговая оценка в категории «Производительность» определялась на базе всех тестов с равнозначным вкладом каждого теста. При этом, если говорить об играх, для уменьшения влияния зависимости от процессора, при подсчете общей производительности (категория «Производительность») учитывались только результаты с разрешением 3840×2160 пикс. (4 K ) .

Результаты с разрешением 2560×1440 пикс. приведены для ознакомления.

Гистограммы нормированы в процентах с сортировкой моделей по результатам тестов. Конкретные результаты в виде баллов и FPS также указаны.

Стоимость видеокарт указана на базе данных крупных интернет-магазинов (на момент публикации) с сайта Hotline.

В отдельном тесте Final Fantasy XV benchmark проводились эксперименты с технологией DLSS (см. гистограмму выше).

Конфигурация тестовой платформы:

Процессор: Intel Core i7-3770K, разогнанный до 4,4 МГц

Материнская плата: Biostar Hi-Fi Z77X

Объем оперативной памяти: 4×4 ГБ DDR3 1600

Накопители: SSD (система), HDD

Операционная система: Windows 10 Pro 64 бит

Монитор: Philips 272P7VPTKEB с разрешением 4K

Используемый драйвер NVIDIA для всех видеокарт: GeForce 416.94

Результаты тестов

Выводы

Как видно по результатам тестов, если сравнивать с решениями прошлого поколения, производительность новых видеокарт на базе RTX 2070 находится между NVIDIA GeForce GTX 1080 и GTX 1080 Ti ближе к GTX 1080.

Тройка ASUS ROG Strix GeForce RTX 2070 OC edition, Gigabyte AORUS GeForce RTX 2070 XTREME 8G и MSI GeForce RTX 2070 GAMING Z 8G - это очень «навороченные» видеокарты. Они имеют продвинутые системы подсветки, значительно повышенные частоты GPU.

Разницу в скорости между ними без специальных тестов вы точно не заметите. По эффективности систем охлаждения в этой тройке лидируют модели от ASUS и MSI.

ASUS позволяет сильнее других увеличить лимит энергопотребления. Эта же модель, кстати, выделяется и самой высокой стоимостью среди всех участников теста.

По впечатлениям от работы подсветки Gigabyte AORUS и MSI можно поставить несколько выше, чем ASUS. Inno3D тут в аутсайдерах.

Представленная в тесте Inno3D GeForce RTX 2070 Gaming OC X2 скромнее на фоне тройки ASUS, Gigabyte AORUS и MSI, хотя тоже далеко не рядовая модель. Она имеет более низкие частоты GPU, не такую продвинутую систему охлаждения и уступит по возможностям подсветки и разгона.

Но, зато, данная модель от Inno3D и самая доступная по цене. По соотношению производительности и стоимости она превосходит других участников теста.

Разница в скорости между Inno3D и тройкой ASUS, Gigabyte AORUS, MSI есть, но она не такая и существенная. Если есть желание сэкономить - это очень достойный вариант.

С самими участниками теста полный порядок. Любая видеокарта из теста - это качественное устройство с высокой производительностью, эффективным охлаждением без каких-то существенных недостатков.

Но новое поколение видеокарт RTX в целом оставляет целый ряд поводов для раздумий, хотя именно переход к RTX производитель называет революционным.

Если не «копать» сильно далеко в прошлое и взять во внимание переходы от поколения GTX 700 к GTX 900 (серия 800 в десктопных видеокартах была пропущена) и от GTX 900 к GTX 1000, то всегда новое поколение видеокарт отличалось сильно возросшей производительностью с одновременным значительным улучшением энергопотребления. При этом большого скачка стоимости равнозначных моделей не происходило.

А что же мы видим сейчас с выходом поколения NVIDIA GeForce RTX?

Да, рост производительности есть, но он не такой заметный, как это было ранее с новым поколением видеокарт.

По энергоэффективности новинки лучше моделей GTX 1000, но совсем незначительно.

А еще вы заметили, что в поколении RTX не произошло роста объема видеопамяти?

Но главное, что новые видеокарты оказались намного дороже своих предшественников .

Причем, ожидать значительного снижения стоимости видеокарт NVIDIA RTX довольно сложно. Они получили намного более сложные и дорогие в производстве графические процессоры.

Проблема в том, что значительная часть усложнений в новых GPU пошла на используемые впервые RT -ядра (аппаратная поддержка трассировки лучей), которые пока мало где можно задействовать . Кстати, на момент выхода видеокарт RTX игр с аппаратной поддержкой трассировки не было вовсе!

И тут еще большой вопрос, стоят ли те изменения в изображении, которые привносит трассировка лучей, очень серьезного падения производительности, происходящего при активации этой функции.

Получается, что на данный момент по соотношению производительности и стоимости новинки RTX 2000 уступают видеокартам-предшественникам серии GTX 1000 (прошлое поколение на архитектуре Pascal).

Да, потенциально RTX 2000 могут наращивать свою привлекательность со временем, с появлением большего количества игр, поддерживающих трассировку лучей и DLSS-сглаживание, но пока об этом говорить рано.

Благодарим компанию Philips за предоставленный 4K-монитор Philips 272P7VPTKEB

Выход компании NVIDIA на рынок наборов логики для процессоров семейства Intel Core 2 вызвал у нас неоднозначные эмоции. Конечно, с точки зрения формальных характеристик, NVIDIA nForce 680i SLI равных нет. По своим возможностям этот чипсет, действительно, превосходит альтернативные решения от Intel и, уж тем более, AMD. Однако спецификации в наше время решают далеко не всё. Рассмотренные нами ранее серийные платы, основанные на NVIDIA nForce 680i SLI, единодушного восхищения, к сожалению, не вызывают. И продукты, построенные на референсном дизайне , и ASUS Striker Extreme , имеют множество мелких проблем, которые способны испортить впечатление об этих продуктах у придирчивых пользователей. Но особенно при этом расстраивает цена материнских плат, основанных на топовом наборе логики от NVIDIA. Именно из-за неё широкая популярность и всенародная любовь NVIDIA nForce 680i SLI явно не грозит. В результате, самым массовым и востребованным набором логики для настольных Core 2 систем на данный момент продолжает оставаться набор логики Intel P965.

Однако в ближайшее время эта ситуация может измениться. Компания NVIDIA начала поставки производителям плат нового набора логики nForce 650i SLI, удешевлённой версии не столь привлекательного NVIDIA nForce 680i SLI. Первые продукты, в основе которых лежит этот многообещающий чипсет, в магазинах уже появились. И что особенно приятно, их стоимость вполне сравнима с ценой материнских плат на интеловских чипсетах. Таким образом, принимая во внимание спецификации NVIDIA nForce 680i SLI, от новинок можно ожидать превосходного сочетания потребительских характеристик и цены. Именно поэтому наша лаборатория решила уделить внимание одной из первых появившихся на рынке материнских плат на базе NVIDIA nForce 650i SLI, ASUS P5N-E SLI.

Впрочем, перед тем как перейти к рассмотрению этого подающего большие надежды решения, пару слов необходимо сказать о самом чипсете NVIDIA nForce 650i SLI, ведь его позиционирование не в верхнем, а в среднем ценовом диапазоне, очевидно, привело к некоторому сокращению возможностей. Первые же выводы об этом можно сделать, глядя на блок-схему новинки.

Как видим, главное отличие NVIDIA nForce 650i SLI от своего старшего собрата заключается в уменьшении количества линий PCI Express, которое отражается в том числе и на схеме реализации технологии SLI. В то время как nForce 680i SLI имел в своём распоряжении в общей сложности 46 линий PCI Express, у nForce 650i SLI их всего 18. В результате, в то время как старшая модель чипсета предлагает реализацию технологии SLI по схеме PCI Express x16 + PCI Express x16, предоставляя к тому же и дополнительную шину PCI Express x8 для установки физического ускорителя, в nForce 650i SLI технология SLI использует более простую схему PCI Express x8 + PCI Express x8. Соответственно, в nForce 650i SLI речь не идёт и ни о каких-либо дополнительных шинах для видеокарт, исполняющих роль физического ускорителя.

Объясняется это тем, что хотя nForce 680i SLI и nForce 650i SLI строятся на базе одного и того же северного моста C55 SPP, их южные мосты не имеют между собой ничего общего. Функции этой микросхемы у nForce 650i SLI сильно урезаны, и не только лишением поддержки линий PCI Express.

Так, NVIDIA nForce 650i SLI располагает лишь одним гигабитным сетевым контроллером вместо двух у старшей модели набора логики, четырьмя Serial ATA-300 портами вместо шести и восемью портами USB 2.0 вместо десяти. Зато nForce 650i SLI предлагает два канала Parallel ATA-133, что для современных чипсетов большая редкость. Но странного в этом ничего нет, ведь южный мост в nForce 650i SLI – это ни что иное, как микросхема nForce 430 MCP, давно и хорошо знакомая нам по интегрированному набору логики nForce 6150. Чему-чему, а искусству унификации у NVIDIA можно поучиться.

К вышесказанному надо добавить, что часть возможностей у nForce 650i SLI отключена на уровне BIOS материнских плат. Так, несмотря на то, что этот набор системной логики использует тот же северный мост, что и nForce 680i SLI, более дешёвый чипсет лишён официальной поддержки технологии NVIDIA Linkboost и поддержки высокоскоростной памяти с EPP. Впрочем, для продвинутых пользователей, привыкших к ручному конфигурированию своих систем, эти отличия вряд ли могут считаться принципиальными.

Итак, сведём воедино всё вышесказанное.

Фактически, если отсутствие поддержки SLI по схеме PCI Express x16 + PCI Express x16 не является для вас принципиальным моментом, то, судя по характеристикам, набор логики NVIDIA nForce 650i SLI может стать вполне полноценной основой системы. И уж, несомненно, он может рассматриваться как настоящий конкурент для Intel P965.

Спецификация и комплект поставки

А вот и первая ласточка, основанная на NVIDIA nForce 650i SLI – материнская плата ASUS P5N-E SLI.

Главный вопрос состоит в том, сможет ли материнская плата ASUS P5N-E SLI, в основе которой лежит многообещающий чипсет NVIDIA nForce 650i SLI, рассматриваться в качестве полновесного соперника популярных решений на базе iP965? Ответ становится ясным уже из её спецификации.

ASUS P5N-E SLI
Процессоры LGA775 процессоры Celeron D, Pentium 4, Pentium D, Pentium 4 XE, Pentium XE, Core 2 Duo, Core 2 Quad и Core 2 Extreme
Чипсет NVIDIA nForce 650i SLI (C55 SPP + nForce 430 MCP)
Частоты FSB, МГц 133-750 (с шагом 1 МГц)
Функции для разгона Возможность изменения напряжения на процессоре, памяти и северном мосту
Независимое тактование шин PCI и PCI Express
Поддержка технологии EPP
Память 4 слота DDR2 DIMM для двухканальной DDR2-1067/800/667/533 SDRAM
Слоты PCI Express x16 2 (с поддержкой NVIDIA SLI в режиме 8x + 8x)
Слоты PCI Express x1 1
Слоты расширения PCI 2
Порты USB 2.0 8 (4 – на задней панели)
Порты IEEE1394 2 порта IEEE1394a (1 – на задней панели, через контроллер VIA VT6308P)
ATA-100/133 2 канала ATA-133 (через чипсет)
Serial ATA 4 канала Serial ATA-300 (через чипсет, с поддержкой RAID)
1 канал eSATA (на задней панели, через контроллер JMicron JMB360)
Поддержка ATA RAID RAID 0, 1, 0+1, 5 у чипсета
Интегрированный звук Шестиканальный HD кодек Realtek ALC883
Интегрированная сеть Gigabit Ethernet (через чипсет)
Дополнительные возможности Нет
BIOS Phoenix AwardBIOS v6.00PG
Форм-фактор ATX, 305x229 мм

Да, может. По основным формальным параметрам она нисколько не уступает основной массе материнских плат, построенных на iP965. При этом надо всё же понимать, что ASUS P5N-E SLI относится к разряду недорогих плат, а потому "тяжеловесы" вроде ASUS Commando принадлежат к более высокому классу. Более подробное знакомство с ASUS P5N-E SLI выявит множество моментов, в которых инженеры руководствовались в первую очередь стремлением сделать эту плату более доступной по стоимости. Таким образом, конкурентоспособность этого продукта мы будем рассматривать, исходя из её стоимости, которая составляет на сегодняшний день $120-140.

Возьмём, например, упаковку и комплект поставки. Экономия тут сразу же бросается в глаза. Рассматриваемая плата предлагается в ни чем не примечательной коробке "обычного" типоразмера без красивых картинок, прозрачных прорезей и ручек для переноски.

Внутри коробки тоже несколько пустовато. В наличии имеется собственно плата, руководство, компакт-диск с ПО и драйверами, заглушка для задней панели корпуса (I/O Shied), шлейфы для подключения дисковода и Parallel ATA устройств, два Serial ATA кабеля и соответствующий переходник питания. Этот джентльменский набор дополнен лишь тремя более ценными принадлежностями: заглушкой-брекетом с парой дополнительных USB портов, гибким шлейфом для соединения видеокарт в режиме SLI и набором фирменных разъёмчиков Q-Connector.

Впрочем, несмотря на скудный (по сравнению с более дорогими платами ASUS) комплект поставки, придраться к нему достаточно сложно. Всё необходимое в коробке, безусловно, есть.

Подробнее о возможностях

То же самое можно сказать и о функциональных возможностях самой платы. Хотя практически все её свойства базируются в своей реализации на соответствующих функциях набора логики, упрекнуть ASUS P5N-E SLI в нехватке чего-то важного вряд ли получится.

Плата поддерживает полный спектр LGA775 процессоров, включая двухъядерные и четырёхъядерные CPU семейства Core 2. Более того, несмотря на отсутствие официальных упоминаний о поддержке ASUS P5N-E SLI будущих процессоров с частотой шины 1333 МГц, сомневаться в работоспособности этой платы с такими CPU не приходится. Эта уверенность обуславливается разгонными результатами платы с одной стороны, и использованием северного моста C55 SPP (который в составе чипсета NVIDIA nForce 680i SLI официально поддерживает будущую шину) – с другой.

Иными словами, нами не видится никаких причин, которые могут вызвать проблемы в эксплуатации ASUS P5N-E SLI с будущими процессорами.

Что касается работы с памятью, то и тут ASUS P5N-E SLI мало чем отличается от той же ASUS Striker Extreme. Благодаря свойствам северного моста C55 SPP частота DDR2 SDRAM может быть задана как делителями относительно частоты FSB (набор делителей не так уж и богат и включает коэффициенты FSB:DRAM равные 1:2, 5:8, 3:4 и 1:1), так и псевдоасинхронно. При включении псевдоасинхронного режима BIOS Setup платы предлагает ввести любое значение частоты памяти от 400 до 2600 МГц, но при этом реальная частота будет подобрана среди близких значений, получаемых при использовании расширенного множества делителей, количество которых в асинхронном режиме значительно увеличено.

Надо заметить что, несмотря на обещанные NVIDIA ограничения в части поддержки технологии EPP чипсетом nForce 650i SLI, ASUS P5N-E SLI поддерживает её без каких либо проблем.

Отдельное внимание следует уделить имеющимся на плате двум слотам PCI Express x16. Эти слоты нужны исключительно для использования в качестве видеоподсистемы пары видеокарт, работающих в режиме SLI. При включении этого режима оба слота логически работают как PCI Express x8. Если же в системе установлена только одна видеокарта, то первый слот функционирует как полноценный PCI Express x16, а второй – отключается. Выбор между режимами работы слотов выполняется самым старым и примитивным способом – при помощи установки в одно из двух положений дочерней карты-переключателя.

Благодаря южному мосту nForce 430 материнская плата ASUS P5N-E SLI имеет восемь портов USB 2.0, четыре порта SATA-300 с поддержкой пропускной способности 3 Гбит в секунду, NCQ и RAID, два канала PATA-133 и гигабитный сетевой порт.

Эти возможности дополняются при помощи контроллера VIA VT6308P, обеспечивающего работу двух IEEE1394 портов, и чипа JMicron JMB360, добавляющего в число свойств платы поддержку дополнительного внешнего порта eSATA (SATA On-the-Go, как его называет ASUS).

Шестиканальный интегрированный звук на ASUS P5N-E SLI реализуется через кодек высокого разрешения Realtek ALC833. Хотя сам по себе этот кодек обладает поддержкой 8 каналов, на плате выведено только шесть из них. Кроме того, следует отметить, что этот кодек относится к числу недорогих и обладает не столь высоким качеством поддержки EAX 2.0, как, например, кодеки Analog Devices, используемые ASUS на более дорогих платах.

Дизайн и впечатления

Комплектация ASUS P5N-E SLI и её заявленные возможности особого впечатления на нас не произвели. Всё вполне типично для материнской платы среднего ценового диапазона. Но что касается дизайна, то здесь у рассматриваемого продукта обнаруживаются весьма примечательные и достаточно необычные особенности.

Так, первое что бросается в глаза при взгляде на плату, это гигантский алюминиевый радиатор, установленный на северном мосту чипсета.

Стремление разработчиков к снижению финальной стоимости платы не дало ни малейшего шанса на появление на ASUS P5N-E SLI более эффективной охлаждающей конструкции. А ведь медный активный кулер здесь явно бы не помешал. Чип C55 SPP чрезвычайно сильно нагревается во время работы. Установленный на плате алюминиевый радиатор раскаляется до таких температур, что при длительной эксплуатации платы возникает сильное беспокойство за здоровье северного моста. Так что мы бы рекомендовали первым делом сменить этот дешёвый радиатор на что-то более эффективное, особенно, если вы планируете разгон, или же ваша система не предусматривает сильную циркуляцию воздуха в районе северного моста.

На южном мосту платы и вовсе никакого радиатора нет. Впрочем, нагревается по сравнению с северным мостом он не столь уж пугающе. Тем не менее, на печатной плате около этой микросхемы предусмотрены крепёжные отверстия, позволяющие дополнительно позаботиться о судьбе и этой микросхемы.

Сомнительная экономия на радиаторах коснулась не только микросхем чипсета. Лишён какого бы то ни было охлаждения и конвертер питания процессора, который на ASUS P5N-E SLI выполнен по классической трёхканальной схеме. В данном случае эта схема не содержит ни цифровой обратной связи, ни SMT конденсаторов, что совершенно неудивительно, учитывая невысокую стоимость платы. В преобразователе напряжения использованы обычные электролитические конденсаторы производства United Chemi-Con, претензий к надёжности которых обычно не возникало.

Элементы конвертера питания процессора, включая конденсаторы, расположены на печатной плате далеко не самым удачным образом – непосредственно вокруг процессорного гнезда. В результате, они способны затруднить установку на ASUS P5N-E SLI систем охлаждения с массивным основанием, которым, кстати, может помешать и радиатор северного моста.

Ещё одна проблема может возникнуть при подключении к плате дополнительного 12-вольтового кабеля питания. Дело в том, что плата оборудована 4-контактным разъёмом, более современный 8-контактный штепсель в который влезает с большим трудом из-за неосмотрительно установленного рядом джампера.

Надо сказать, что дизайн ASUS P5N-E SLI не обделён и некоторыми другими недостатками, многие из которых можно увидеть на приведённой схеме.

Сильное расстройство вызывает местонахождение разъёма для подключения FDD, который прячется за последним слотом PCI. Также оставляет желать лучшего и размещение SATA портов, воспользоваться которыми при наличии в системе двух видеокарт может быть не очень просто.

Все проблемы с неудачным выбором места для размещения тех или иных разъёмов на плате могут объясняться уменьшенной (c целью экономии) площадью PCB, и это даёт инженерам ASUS некоторое оправдание. За что же прощать конструкторов совсем не хочется – так это за наличие на P5N-E SLI всего трёх разъёмов для подключения вентиляторов. Для платы такого уровня, несущей на себе сильно греющиеся элементы, этого, вне всяких сомнений, недостаточно.

Задняя панель платы выглядит несколько пустоватой. Здесь присутствуют PS/2 порты для подключения мыши и клавиатуры, четыре порта USB, порт IEEE1394, сетевой разъём RJ45 с диагностическими светодиодами, порт eSATA, три аналоговых аудио-разъёма, коаксиальный SPDIF выход и параллельный порт.

На PCB при этом имеется pin-коннекторы для подключения четырёх дополнительных портов USB, порта IEEE1394 и последовательного COM порта.

BIOS

Разгонные возможности материнской платы во многом определяются её BIOS. Учитывая, что в основе ASUS P5N-E SLI лежит тот же самый северный мост, который служит базисом ASUS Striker Extreme, мы ожидали, что BIOS Setup этой платы предложит нам похожие возможности для разгона процессоров и памяти. Однако не тут-то было. Инженеры ASUS существенно ограничили число настроек BIOS Setup своей недорогой платы, построенной на наборе логики NVIDIA nForce 650i SLI. Остаётся только надеяться, что на оверклокерском потенциале платы это скажется не столь сильно.

Все возможности BIOS Setup, посвящённые конфигурированию памяти и процессора и их разгону, находятся в меню Advanced. Основная часть интересующих оверклокеров параметров вынесена в раздел JumperFree Configuration.

Здесь можно выключить технологии EPP, а также попасть на отдельные страницы Setup, с функциями для управления напряжениями и частотами.

Подраздел System Clocks содержит единственную опцию для задания частоты шины PCI Express, которая изменяется в пределах от 100 до 131 МГц с шагом в 1 МГц.

В подразделе Voltage Control открывается доступ к управлению тремя величинами:

В подразделе FSB & Memory Config задаётся частота шины FSB и шины памяти.

Заметим, что установка частоты фронтальной шины происходит в несколько непривычном "учетверённом" формате. В пересчёте же на привычные значения, FSB может тактоваться в пределах частот от 133 до 750 МГц. Частота памяти выставляется либо связанно с FSB, используя делители FSB:DRAM равные 1:2, 5:8, 3:4 и 1:1, либо псевдоасинхронно. Имейте в виду, NVIDIA nForce 650i SLI не имеет полностью асинхронного отдельного тактового генератора для формирования частоты шины памяти. После установки желаемого значения в BIOS Setup плата подберёт наиболее подходящий делитель (их в распоряжении чипсета – более чем достаточно) и укажет фактическую частоту памяти. В большинстве случаев эта частота отличается от желаемой не более чем на 10-20 МГц в меньшую сторону. Диапазон же частот памяти, который даёт выбрать ASUS P5N-E SLI в псевдоасинхронном режиме лежит от 400 до 2600 МГц.

Раздел CPU Configuration открывает доступ к манипулированию коэффициентом умножения процессора (для процессоров, позволяющих смену множителя) и к управлению различными процессорными технологиями.

Все настройки памяти вынесены в подраздел Memory Timings Settings раздела Chipset.

Как видим, плата открывает доступ ко всем основным задержкам подсистемы памяти, в том числе позволяет управлять и параметром Command Rate.

Необходимо отметить, что практически все перечисленные напряжения, а также параметры процессора и памяти, могут быть выставлены в значение Auto, что несколько упрощает настройку BIOS Setup.

Помимо возможностей, нацеленных непосредственно на оверклокинг, BIOS Setup ASUS P5N-E SLI располагает и парой других любопытных возможностей. Во-первых, он позволяет сохранять профили настроек в энергонезависимой памяти и даже в файлах. Во-вторых, в нём встроена утилита EZ Flash 2, основной функцией которой выступает обновление прошивок, не выходя из BIOS. Эта утилита способна брать файлы с новыми версиями BIOS c Floppy, CD и жёстких дисков, размеченных под FAT, а также с USB Flash дисков.

Аппаратный мониторинг, реализованный на ASUS P5N-E SLI, позволяет отслеживать скорость вращения трёх вентиляторов и температуры процессора и платы.

В BIOS реализована и традиционная технология Q-Fan, позволяющая управлять скоростями вентиляторов в зависимости от температур узлов системы.

Разгон

Из описания BIOS Setup следует, что ASUS P5N-E SLI не столь богата настройками, как многие другие материнские платы для энтузиастов. В то же время все основные параметры эта плата изменять позволяет, и это даёт надежду на её применимость в качестве оверклокерской платформы.

Более того, последние рассмотренные нами платы для продвинутых пользователей имели чрезвычайно сложный BIOS Setup, за правильным подбором настроек в котором можно было бы провести немало времени. ASUS P5N-E SLI в этом ключе выглядит очень привлекательно: две частоты и три напряжения – весь инструментарий, который способен пригодиться при разгоне CPU. Другое дело, что результаты такого разгона могут оказаться не столь ошеломляющими. Собственно, проверить все эти умозрительные заключения при помощи тестов мы и взялись.

Для экспериментов мы собрали систему, основанную на рассматриваемой плате с установленным процессором Intel Core 2 Extreme X6800. Кроме этого, в тестовой платформе использовалось 2 Гбайта DDR2 оперативной памяти Corsair TWIN2X2048-8500C5D, видеокарта PowerColor X1900 XTX 512MB и жёсткий диск Western Digital Raptor WD1500AHFD. Благодаря тому, что набор логики NVIDIA nForce 650i SLI позволяет псевдоасинхронное тактование памяти, во время испытаний DDR2 SDRAM всегда работала на частоте, равной или чуть меньшей 800 МГц с таймингами 4-4-4-12-1T. Для охлаждения процессора использовался кулер Zalman CNPS9500 LED, а, кроме того, мы устанавливали на радиатор северного моста дополнительный 60 мм вентилятор. Стабильность работы указанной системы при разгоне проверялась при помощи хорошо зарекомендовавшей себя утилиты ORTHOS, основанной на коде Prime95.

Максимальная частота шины FSB, при которой плата сохраняет способность к стабильному функционированию, была найдена нами очень быстро. Также как и при испытаниях ASUS Striker Extreme, она составила 490 МГц.

При достижении этого результата нам пришлось лишь повысить напряжение на северном мосту набора логики до 1.563 В и на процессоре до 1.475 В. Казалось бы, всё просто? Не тут-то было. ASUS уже давно не выпускал материнских плат, на которых все оверклокерские функции работают сразу, без применения "системы сдержек и противовесов".

Во-первых, столь высокого результата при повышении частоты FSB нам удалось достичь только благодаря дополнительному вентилятору, который мы установили на радиатор северного моста. При удалении этого вентилятора плата неизменно зависала при прохождении POST даже при снижении частоты FSB до 450 МГц.

Во-вторых, как показали тесты, в столь высоких частотах FSB на ASUS P5N-E SLI, как и на ASUS Striker Extreme, смысла немного. Из-за переключения FSB Strap где-то в районе 400-450 МГц при прохождении этой границы катастрофически падает производительность подсистемы памяти, что, порой, не компенсируется даже существенным приростом тактовой частоты процессора.

И в-третьих, при испытаниях ASUS P5N-E SLI мы столкнулись с ещё одной неприятной проблемой, называемой оверклокерами FSB Hole. Рассматриваемая нами плата продемонстрировала свою полную неработоспособность при установке частот FSB из диапазона от 400 до 450 МГц.

К этому необходимо добавить, что от P5N-E SLI было бы глупо ожидать отсутствия традиционного для плат ASUS несоответствия напряжений. В частности, реальное напряжение на процессоре оказывается ниже установленного в BIOS Setup примерно на 0.05 В. Ещё примерно на 0.05 В оно "проседает" при высокой нагрузке на CPU, что, в принципе, находится в рамках интеловских спецификаций, но, тем не менее, сильно раздражает многих оверклокеров.

Псевдоасинхронное тактование памяти чипсетом nForce 650i SLI делает возможным на рассматриваемой плате и разгон DDR2 SDRAM, который может выполняться совершенно независимо от разгона частоты FSB. На пробу мы решили узнать, до какого предела сможет увеличить эта плата частоту для наших тестовых модулей памяти TWIN2X2048-8500C5D при напряжении 2.4 В. Здесь нас постигло некоторое разочарование: ASUS P5N-E SLI, как оказалось, разгоняет DDR2 SDRAM хуже, чем Striker Extreme. Максимальная достигнутая нами частота на шине памяти составила 550 МГц.

Напомним, на материнской плате ASUS Striker Extreme эти же модули без проблем работали на частоте 587 МГц. Впрочем, существует надежда на то, что разгон памяти в перспективе улучшится с выходом последующих версий BIOS. Так, использовавшаяся нами в тестах прошивка 0401 в этом смысле уже значительно превосходит предыдущие версии, а значит, инженеры ASUS ведут работу в этом направлении.

Тестирование производительности

Так как рассматриваемая в рамках данного обзора материнская плата ASUS P5N-E SLI основывается на наборе логики NVIDIA nForce 650i SLI, с которым ранее мы не сталкивались, интерес вызывает и обычная производительность этой платы. Поэтому мы решили сравнить скорость работы ASUS P5N-E SLI с быстродействием других популярных материнских плат, в основе которых лежат распространённые на рынке чипсеты от AMD, Intel и NVIDIA.

В составе тестовых систем нами был использован следующий набор оборудования:

  • Процессор: Intel Core 2 Extreme X6800 (LGA775, 2.93GHz, 4MB L2).
  • Материнские платы:
    • DFI LANParty UT ICFX3200-T2R/G (AMD Crossfire Xpress 3200);
    • DFI Infinity 975X/G (Intel 975X Express);
    • ASUS P5B Deluxe (Intel P965 Express);
    • ASUS P5N-E SLI (NVIDIA nForce 650i SLI);
    • ASUS Striker Extreme (NVIDIA nForce 680i SLI);
  • Память: 2 Гбайта DDR2-800 SDRAM (Corsair TWIN2X2048-8500C5D).
  • Графическая карта: PowerColor X1900 XTX 512MB (PCI-E x16).
  • Дисковая подсистема: Western Digital WD1500AHFD (SATA150).
  • Операционная система: Microsoft Windows XP SP2 с DirectX 9.0c.
Мы старались поставить тестируемые системы в примерно одинаковые условия, поэтому во всех платформах оперативная память работала на частоте 400 МГц с таймингами 4-4-4-12. Тем не менее, выбранные нами установки контроллеров памяти всё же различались в одном параметре. А именно, в Command Rate. Материнские платы, основанные на чипсетах Intel, как известно, не позволяют изменять эту настройку в силу ограничений набора логики. Поэтому, платформы на i975X и iP965 работали при 2T Command Rate.
ASUS P5B Deluxe ASUS P5N-E SLI ASUS Striker Extreme DFI Infinity 975X/G DFI LANParty UT ICFX3200-T2R/G
Sandra 2007, Memory Bandwidth, MB/s 5687 5993 5959 5701 5496
Sandra 2007, Memory Latency, ns 81 72 70 75 96
SuperPi 8M, sec 220.5 221.4 219.8 221.7 241.5
3DMark2001 SE 44882 44906 45184 45076 44704
3DMark06 6523 6531 6532 6518 6503
3DMark06, CPU 2628 2632 2640 2621 2599
PCMark05 7658 8134 7771 8150 7922
PCMark05, CPU 7533 7540 7550 7531 7500
PCMark05, Memory 6002 6202 6206 6027 5776
Far Cry, 1024x768 189.07 192.38 194.33 189.69 178.39
Half-Life 2, 1024x768 150.87 154.88 155.58 153.54 146.21
Quake 4, 1024x768 High Quality 135.32 136.66 136.72 135.54 130.44
CINEBENCH 9.5, Rendering 910 906 908 918 901
AutoGK 2.4/Xvid 1.2, fps 45.32 44.88 45.5 46.46 43.96
WinRAR 3.70 1360 1461 1467 1468 1235

Как показывают проведённые тесты, производительность ASUS P5N-E SLI оказывается лишь незначительно ниже быстродействия материнской платы более высокого класса, ASUS Striker Extreme. Иными словами, претензий к скорости работы рассматриваемой платы у нас нет никаких.

Впрочем, нельзя забывать о том, что режим SLI реализуется на ASUS P5N-E SLI в несколько урезанном варианте, с использованием шин PCI Express x8. Соответственно, при установке в систему на базе этой платы пары видеокарт, она будет показывать ощутимо более низкую производительность, чем ASUS Striker Extreme, поддерживающая "полноценный" SLI. Уровень отставания в этом случае достигает 20% в наиболее современных игровых приложениях.

Выводы

ASUS P5N-E SLI не лишена недостатков, некоторые из которых отнюдь не пустяковые. Однако благодаря этой плате мы можем сказать с полной уверенностью, что набор логики NVIDIA nForce 650i SLI, на котором она основывается, может стать прекрасной основой для Core 2 систем среднего уровня.

Что же касается непосредственно материнской платы, то, суммируя всё вышесказанное, можно говорить о том, что ASUS P5N-E SLI способна стать альтернативой популярным продуктам, основанным на чипсете iP965. В своей ценовой категории ($120-$140) эта плата обеспечивает неплохую функциональность, хорошую производительность и вполне приемлемые возможности для разгона процессора. Более того, эта плата позволяет эксплуатировать видеокарты на чипах NVIDIA в режиме SLI, хотя и с некоторой потерей в быстродействии по сравнению с более дорогими платами, основанными на nForce 680i SLI, но с выигрышем в скорости по сравнению с использованием одиночной видеокарты.

Впрочем, мы не склонны идеализировать рассмотренную плату. Пока что мы не видели продуктов других производителей, основанных на nForce 650i SLI, на фоне которых плата ASUS, возможно, будет выглядеть не столь выигрышно. Тем более что недостатков у неё немало.

  • Хороший уровень производительности;
  • Возможность разгона шины FSB почти до 500 МГц;
  • Независимый разгон оперативной памяти;
  • Привлекательная цена.
  • Отсутствие качественного охлаждения чипсета и конвертера питания CPU;
  • FSB Hole от 400 до 450 МГц;
  • Неудачный дизайн печатной платы;
  • Шестиканальный интегрированный звук.

Компания NVIDIA хорошо известна пользователям ПК как признанный лидер рынка игровых видеокарт. Благодаря своим 3D-ускорителям GeForce компании удалось занять практически монопольное положение, поскольку она испытывает конкуренцию только со стороны одной графической компании, ATI Technologies. Не останавливаясь на достигнутом, NVIDIA сделала попытку вторгнуться на другой рынок, рынок чипсетов для материнских плат.

Однако успешной эту попытку назвать никак нельзя. На мой взгляд, повторилась ситуация с запуском графического бизнеса NVIDIA. Как известно, компания дебютировала на рынке с чипом NV1 - интегрированным контроллером, совмещающим в себе и видео-, и звуковую часть. Однако в итоге пришлось отказаться от звука и выпустить NV2 (он же Riva128) - классический графический 3D-ускоритель.

Конечно, сегодня все обстоит не так, как это было в начале. NVIDIA - далеко не новичок в области разработки высокотехнологических продуктов. Однако у чипсетов для материнских плат есть своя специфика: это не просто подсистема, как в случае с графическим контроллером, это - важнейший узел системы, выступающий в роли связующего звена между всеми остальными компонентами. От чипсета во многом зависят практически все параметры системы - производительность, совместимость, расширяемость, функциональность, стабильность и т.д. С первого раза выпустить продукт, не уступающий по всем параметрам аналогам фирм, которые не одну собаку съели на разработках чипсетов, кажется просто нереальным.

Однако надо отдать должное смелости NVIDIA. Фирма не просто предложила свой аналог, она использовала самые передовые и многообещающие технологии, сделав заявку на лидерство как в сегменте производительных ПК, так и в сегментах базовых (mainstream) и бюджетных (value) систем. К сожалению, все идет к тому, что попытка в целом не удалась. Однако об этом - чуть позже, а сейчас - краткий обзор чипсетов серии nForce с сопоставлением того, что хотела NVIDIA, и что получилось на самом деле.

Чипсеты nForce: 420D, 415D, 220D, 220

Семейство чипсетов NVIDIA включает в себя на данный момент четыре базовых модификации: nForce 420D, 415D, 220D и 220 (по убыванию стоимости). Также в ближайшее время будут добавлены еще два чипсета - nForce 620D и 615D, которые являются ничем иным, как доработанными модификациями 420D и 415D соответственно (по крайней мере, такие сведения имеются на момент написания статьи).

Структура чипсета - классическая двухчиповая: сопряжением процессора, памяти и AGP-видеокарты занимается северный мост, а за работу с периферийными устройствами отвечает южный мост. Северных мостов nForce существует три: IGP-128, IGP-64 и SPP.

"IGP" - это "Integrated Graphics Processor" (интегрированный графический процессор), северный мост со встроенным графическим ядром, который NVIDIA называет процессором. Идеологически это неверно, так как обработкой данных он не занимается, а только коммутирует потоки данных и команд. Вот его часть, графическое ядро, действительно является процессором. Варианты чипа с индексами -128 и -64 отличаются суммарной шириной шины памяти (об том ниже). Чип IGP-128 является основой nForce 420D, а IGP-64 - nForce 220D и 220.

"SPP" расшифровывается как "System Platform Processor". Фактически это все тот же IGP-128, но с отключенным графическим ядром. NVIDIA пришлось отказаться от встроенной графики, достаточно медленной по нынешним меркам, поскольку современным требованиям она уже не удовлетворяет. Рынок производительных компьютеров не принял nForce 420D, однако в случае с nForce 415D (именно этот чипсет использует северный мост SPP) ситуация может измениться коренным образом. Нечто подобное в свое время произошло с Intel и чипсетом i815. Мне, например, непонятно, почему NVIDIA наступила на те же грабли.

В качестве южного моста NVIDIA предлагает чип MCP-D или его упрощенный вариант MCP. "MCP" расшифровывается как "Media and Communication Processor". В его состав входит звуковой контроллер NVIDIA "APU" (Audio Processing Unit), контроллеры USB и ATA, PCI и LPC интерфейс, сетевой контроллер MAC-уровня, SMBus-контроллер, другие контроллеры и кое-что необычное - тактовый генератор. Связь с северным мостом осуществляется посредством шины HyperTransport - фактически это первый массовый продукт, имеющий поддержку этой новейшей разработки AMD.

Давайте подробно рассмотрим особенности архитектуры и функционирования чипов.

Северные мосты IGP и SPP: TwinBank, DASP, NV11

Северный мост чипсета nForce 420D - это чип, обеспечивающий взаимодействие процессора, памяти, AGP-видеокарты и моста MCP. Он состоит из следующих блоков:

  • шинный интерфейс (поддержка шины EV6 с эффективной частотой 200 и 266 МГц, используемой процессорами AMD K7);
  • хост-контроллер AGP (режимы 4x, FastWrites, SBA, частота 66 МГц);
  • контроллер шины HyperTransport (для связи с MCP, пропускная способность - 800 Мб/с);
  • два независимых контроллера памяти, поддержка SDRAM и DDR SDRAM, частота - до 133 МГц, объем - до 1.5 Гб;
  • встроенное графическое ядро GPU (NV11 GeForce2 MX);
  • интеллектуальный арбитр-коммутатор.

Чипсет nForce поддерживает только процессоры AMD Athlon и Duron. Однако у NVIDIA нет каких-либо технических проблем с реализацией поддержки других процессоров, в частности, Intel Pentium-4. По ряду причин - маркетинговых, юридических и т.д. - на данный момент существует только вариант чипсета для платформы AMD.

Встроенное графическое ядро полностью эквивалентно чипу NV11 (GeForce2 MX). Отличия только в тактовых частотах и интерфейсе памяти. Встроенное ядро пользуется системными контроллерами, которые предоставляют доступ к памяти другим компонентам системы (в первую очередь процессору). Графическое ядро может быть отключено, если в слот AGP установлена внешняя видеокарта. Для большинства пользователей, использующих игры или графические приложения, возможностей и быстродействия GeForce2 MX будет недостаточно.

Для реализации вывода на телевизор и цифровой монитор чипсет поддерживает специальные платы расширения, устанавливаемые в слот AGP. Впрочем, они мало распространены, так что воспользоваться этой возможностью вряд ли удастся.

Чип SPP отличается от IGP только отключенным встроенным видео.

TwinBank - ключевая особенность архитектуры nForce, из-за которой, собственно, производительность чипсета должна была оказаться достаточно высокой. Ее суть в том, что у чипсета имеется не один, а два полноценных независимых 64-разрядных контроллера памяти, к которым могут обращаться все блоки чипсета. Каждый из контроллеров работает со своим набором банков (первый - с DIMM0, второй - с DIMM1 и DIMM2). Данные располагаются во всех банках с чередованием. При последовательном обращении к памяти устройство будет получать данные из обоих банков поочередно в режиме конвейера, что позволит сократить задержки, связанные с открытием/закрытием страниц, задержками на регенерацию и т.д. Если к памяти будут обращаться сразу несколько устройств, им не придется простаивать в ожидании, пока контроллер закончит работу с другим устройством. Тем самым гарантируется прирост скорости работы с памятью и увеличение ее пиковой пропускной способности до 4.2 Гб/с.

Использование такой архитектуры не должно привести к существенному увеличению быстродействия всей системы по той простой причине, что пропускная способность процессорной шины EV6 составляет всего 2.1 Гб/с - дополнительные 2.1 Гб/с ей практически ничего не дадут. Архитектура TwinBank оптимизирована прежде всего для нужд встроенного графического ядра. Благодаря ей интегрированный GeForce2 MX будет в меньшей степени подвержен проблемам совместного разделения шины памяти с другими компонентами системы, прежде всего с процессором. Если же будет использоваться отдельная видеокарта, прирост быстродействия будет мало заметен, так как прокачка текстур по AGP-каналу обычно не так интенсивна, чтобы загружать системную память.

NVIDIA утверждает, что если установить только один DIMM-модуль, будет использоваться только один контроллер памяти. Поэтому желательно ставить два модуля - один в первый, другой - во второй слот. Так как контроллеры независимы, можно ставить разные модули и конфигурировать их отдельно. По некоторым данным, если модули памяти не будут распознаны как официально поддерживаемые (см. список совместимых модулей на сайте NVIDIA), будет активирован режим "Super Stability Mode", при котором тайминги памяти снижены. Таким образом NVIDIA борется с проблемой низкой стабильности своего чипсета, выявленной сразу же после появления первых материнских плат на его базе.

Чип IGP-64 не позволяет использовать TwinBank (второй контроллер памяти отключен), поэтому его встроенное видео может теоретически достигнуть лишь уровня GeForce2 MX200. Однако до последнего времени nForce 220D, базирующийся на чипе IGP-64, не был востребован по причине слишком высокой цены, несоразмерной с его функциональностью и производительностью.

Еще одна ключевая особенность чипа IGP (точнее, его арбитра) - анализатор обращений к памяти DASP (Dynamic Adaptive Speculative Pre-Processor). Он отслеживает запросы на чтение, анализирует их характер и строит шаблоны, с помощью которых можно будет предсказать последующие запросы. После того, как шаблон определен, DASP-блок начинает генерировать запросы самостоятельно, предсказывая их и кэшируя полученные данные. Тем самым полоса пропускания памяти используется более эффективно, а часть данных, правильно предсказанная и полученная из памяти заблаговременно, поступает в процессор без обращения к памяти. Существующие чипсеты-аналоги способны только ставить запросы в очередь, но не предсказывать их. Тем самым технология DASP должна повысить эффективность TwinBank и обеспечить выдачу данных из памяти с меньшими задержками.

Южный мост MCP: APU

Южный мост NVIDIA MCP подключен к IGP/SPP с помощью новой универсальной шины HyperTransport, основное преимущество которой в данном случае - высокая пропускная способность (800 Мб/с). Только чипсеты SIS имеют более быстродействующую шину собственной разработки - MuTIOL (1 Гб/с), да и та вне чипов работает вдвое медленнее.

MCP - типичный современный южный мост, имеющий в своем составе контроллеры PCI (до пяти слотов), LPC (подключение флеш-микросхемы с ПЗУ и чипа ввода-вывода), USB (до шести портов), ATA/ATAPI (режим UltraATA/100), сетевой контроллер MAC-уровня и два AC-интерфейса для звуковых и модемных кодеков. Но есть у этого моста и уникальная особенность - встроенный звуковой контроллер APU (Audio Processing Unit). Он построен на базе нескольких DSP и способен аппаратно обрабатывать до 256 потоков 2D-звука, до 64 потоков 3D-звука, накладывать различные спецэффекты, в том числе применять HRTF-фильтры (для имитации объемного звучания). APU поддерживает DirectSound3D и новые возможности DirectX8, а также API и алгоритмы фирмы Sensaura. Кроме того, и это реализовано впервые, звуковой контроллер NVIDIA имеет встроенный блок кодирования звука в цифровой формат Dolby Digital (AC-3), благодаря чему позволяет эффективно использовать имеющуюся у пользователя цифровую акустику или систему "домашний кинотеатр". Впрочем, работает этот блок только у чипа MCP-D (nForce420D), а у MCP он отключен.

А в чем проблема?

Хорошо, скажете вы, чипсет замечательный - два контроллера памяти, шина HyperTransport, более чем передовой встроенный звук, да и графическое ядро - лучшее на сегодняшний день. Почему же тогда мы не завалены платами на чипсетах nForce?

Причин тому несколько. Во-первых, чипсет очень дорогостоящий. NVIDIA попросила за него нереальные деньги, поэтому производители материнских плат, ориентирующиеся на небогатого пользователя, сразу отказались от nForce - их потенциальные клиенты просто не смогут покупать дорогие платы. Сегодня с NVIDIA сотрудничают только избранные компании с положительной репутацией, выпускающие платы верхнего ценового диапазона - ASUS, ABIT, MSI, Leadtek и т.д.

Во-вторых, чипсет оказался не слишком удачным. Вот только короткий перечень его проблем:

  1. не доведенный до готовности BIOS, из-за чего возникают проблемы с совместимостью, быстродействием и стабильностью;
  2. встроенный тактовый генератор не имеет широких возможностей по настройке, что ограничивает пригодность платы к разгону;
  3. не предусмотрено достаточных средств для настройки чипсета;
  4. поддержка на уровне драйверов оставляет желать лучшего: WinNT, Linux и некоторые другие ОС практически не поддерживаются, Win98/ME - только частично (например, с горем пополам работает аппаратный звук).

В-третьих, чипсет совсем не вписался в ту нишу, на которую был нацелен. Встроенное игровое видео оказалось неуместным при высокой цене - куда важнее оно для бюджетной машины, но не для дорогостоящей игровой или рабочей станции. На мой взгляд, вместо nForce420D следовало сразу выпускать пару nForce 415D + nForce 220D.

Тем не менее, платы на базе nForce 420D после почти года доводки наконец-то появились в продаже в достаточных количествах. Обзору одной из них будет посвящена одна из следующих статей.

Чипсет NVIDIA nForce 790i SLI
Процессор LGA775 Pentium 4 FSB 1066/800/533 МГц
Celeron Conroe/Prescott FSB 800/533 МГц
Dual-Core Pentium4 Smithfield/Presler
Yorkfield, Wolfdale FSB 1600/1333/1066/800 МГц
Quad-Core Kentsfield, Dual-Core Conroe/Allendale
HyperThreading
Память DDR3 800/1066/1333
HDD 1x UltraDMA/133(RAID)
8x SerialATA II (2x RAID)
Дополнительно Звук High Definition Audio
10 USB 2.0
2x Gigabit Ethernet LAN
2х IEEE-1394
Цена: ~$425 (Price.Ru)

Чипсет NVIDIA nForce 790i SLI анонсирован довольно давно, однако первые продукты на его основе появляются только сейчас. Впрочем, сожалеть об этом не будем - одна из главных особенностей этого продукта заключается в поддержке памяти DDR3, которая стала относительно доступной (по цене) лишь несколько недель назад. Кстати, NVIDIA выпустила еще одну версию чипсета, под названием nForce 790i Ultra SLI. Причем единственное ее отличие от "не Ultra" заключается в поддержке более скоростных модулей памяти DDR3 и поддержке технологии EPP 2.0. Все остальные характеристики - совершенно одинаковые.

Второй важной особенностью этих чипсетов является нативная поддержка шины PCI Express v2.0. Если чипсет nForce 780i SLI являлся переименованным nForce 680i SLI, в котором поддержка PCI-E v2.0 была реализована при помощи дополнительного моста nForce 200, то северный мост nForce 790i поддерживает то же самое количество линий, без дополнительных чипов. Всего этот чипсет поддерживает 62 (!) линии шины PCI Express, из которых 32 линии отвечают спецификациям v2.0. Такое количество позволяет разработчикам материнских плат установить на свои продукты три слота PCI Express x16 и обеспечить поддержку технологии 3-way SLI (т.е. объединение вычислительных ресурсов трех видеокарт NVIDIA).

Что касается южного моста, то он не претерпел изменений. Это чип nForce 570i MCP, возможности расширения которого полностью отвечают современным требованиям.

Итак, объектом сегодняшнего тестирования является материнская плата ASUS Striker II NSE на чипсете nForce 790i SLI. Этот продукт относится к довольно дорогой и эксклюзивной серии "Republic of Gamers" и предназначен для оверклокеров и компьютерных энтузиастов. Ориентация платы на эту группу пользователей выдает вотерблок, который установлен на северном мосту чипсета, а также богатая комплектация и мощные функции разгона (которые, как показало это тестирование, действительно работают, в отличие от Striker II Formula на nForce 780i SLI).

Спецификация ASUS Striker II NSE

Процессор - Intel Pentium 4 (Prescott (2M)/Gallatin/CedarMill) с частотой шины 1066/800/533 МГц
- Двухъядерные Intel Pentium D/EE (Smithfield/Presler) с частотой шины 800/1066 МГц
- Intel Celeron-D (Conroe-L, Prescott) с частотой шины 800/533 МГц
- Поддержка Intel Core 2 Duo/Quad (Kentsfield (4 ядра), Conroe/Allendale (2 ядра)) с частотой шины 1333/1066/800 МГц
- Поддержка Intel Yorkfield, Wolfdale с частотой шины 1600/1333/1066/800 МГц
- Разъем Socket LGA775
- Поддержка процессоров с технологией HyperThreading
Чипсет - Северный мост nForce 790i SLI SPP
- Южный мост nForce 570i SLI MCP
- Связь между мостами: шина HyperTransport (1 ГГц)
Системная память - Четыре 240-контактных слота для DDR-3 SDRAM DIMM
- Максимальный объем памяти 8 Гб
- Возможен двухканальный доступ к памяти
- Поддерживается память типа DDR3 800/1066/1333
- Индикаторы питания на плате
Графика - Три слота PCI Express x16 (2х 16 v2.0 + 1х 16 v1.0)
Возможности расширения - Два 32-х битных PCI Bus Master-слота
- Два слота PCI Express x1
- Десять портов USB 2.0 (6 встроенных + 4 дополнительных)
- Два порта IEEE1394 (Firewire; 1 встроенный + 1 дополнительный)
- Два сетевых контроллера Gigabit Ethernet
Возможности для разгона - Изменение частоты FSB от 100 до 750 МГц; изменение множителя
- Изменение напряжения на процессоре, памяти, FSB, PLL и чипсете(nb & sb)
- Технология ASUS AI Overclocking
- Утилита ASUS AI Booster
Дисковая подсистема - Один канал UltraDMA133/100/66/33 Bus Master IDE (с поддержкой до 2 ATAPI-устройств & RAID 0, 1)
- Поддержка протокола SerialATA II (6 каналов - nForce 570i SLI, c поддержкой RAID 0,1,5, 0+1 и JBOD)
- Дополнительный SerialATA II/Raid-контроллер (микросхема JMB363, 2 канала SerialATA II, RAID)
- Поддержка LS-120 / ZIP / ATAPI CD-ROM
BIOS - 8 MBit Flash ROM
- Award Phoenix BIOS с поддержкой Enhanced ACPI, DMI, Green, PnP Features и Trend Chip Away Virus
- Технология ASUS EZ Flash 2
- Технология ASUS CrashFree BIOS 2
- Технология ASUS MyLogo 3
- Технология ASUS OC Profile
- Multi-languages BIOS
Разное - Один порт для FDD, порт для PS/2 клавиатуры
- Кнопки включения, перезагрузки и сброса настроек BIOS
- IrDA
- STR (Suspend to RAM)
- SPDIF Out
Управление питанием - Пробуждение от модема, мыши, клавиатуры, сети, таймера и USB
- 24-контактный разъем питания ATX (ATX-PW)
- Дополнительный 8-контактный разъем питания
Мониторинг - Отслеживание температуры процессора, системы, чипсет (nb+sb), трех дополнительных термодатчиков, мониторинг напряжений, определение скорости вращения восьми вентиляторов
- Технология ASUS Q-Fan 2
- Технология ASUS AI Gear, AI Nap
Размер - ATX форм-фактор, 244x305 мм (9,63" x 12")

Коробка

Плата упакована в довольно внушительную коробку со стильным дизайном:

Коробка имеет ручку для переноски, а одна страница обложки раскрывается наподобие книги:

Внутри пользователь обнаружит плату в прозрачном пластиковом боксе, а также еще одну коробку с аксессуарами:

Комплектация

  • материнская плата;
  • DVD-диск с ПО и драйверами;
  • диск с игрой Company of Heroes: Opposing Fronts;
  • руководство пользователя на английском языке;
  • один ATA-133-шлейф, FDD-шлейф;
  • шесть SerialATA-кабелей + переходник питания (два разъема);
  • заглушка на заднюю панель корпуса;
  • планка с двумя портами USB 2.0 и одним портом Firewire;
  • SLI-коннектор, 3-way SLI-коннектор;
  • набор стяжек + набор резиновых подставок;
  • дополнительный вентилятор;
  • звуковая карта SupremeFX II;
  • набор дополнительных коннекторов Q-Connector;
  • наклейка с логотипом ASUS;
  • набор хомутов, переходников и соединительных трубок для СВО;
  • три внешних термодатчика;
  • LCD Poster.

Комплектация платы Striker II NSE полностью соответствует уровню high-end-продукта. В частности, пользователю не придется искать в магазинах внешние термодатчики или набор для подключения системы водяного охлаждения: все это есть в комплекте. Единственное, что, возможно, придется купить, - это переходники питания для SerialATA-устройств (если у пользователя "старый" блок питания) и/или планку с парой портов USB 2.0 (если используется "старый" корпус).

Начнем с документации. Книжка написана просто отлично; затронуты все аспекты сборки и настройки системы (включая иллюстрированное руководство подключения СВО).

Кроме этого, к плате прилагается два DVD-диска. На первом можно найти набор фирменных утилит ASUS (PC Probe 2, AIBooster, Update, MyLogo 3 + набор заставок), а также все необходимые драйверы для Windows и Linyx. Кроме того, на диске записан пакет Norton Internet Security 2007 и Kaspersky Anti-Virus. Более того, на диске имеется лицензионная версия 3DMark 06 Advanced Edition (однако мы не нашли серийного номера для этого бенчмарка). На втором диске записана суперпопулярная стратегия Company of Heroes: Opposing Fronts.

Далее - к плате прилагается шесть кабелей SerialATA, переходник питания с двумя разъемами, PATA- и FDD-шлейфы, заглушка на заднюю панель (которая способна защитить систему от статики), а также набор коннекторов Q-Connector.

Следующими компонентами являются дополнительный вентилятор и планка с двумя портами USB 2.0 и портом Firewire.


Для организации SLI-массива в комплектацию включены два коннектора: один гибкий, для соединения двух видеокарт, другой - жесткий, для трех карт соответственно.

Кроме этого, есть набор стяжек, три внешних термодатчика и LCD-Poster. Последний представляет собой небольшой экран, который предназначен для вывода диагностических сообщений. Точно такой же экран был установлен на первом Striker. Причем он был жестко закреплен на задней панели, а наш LCD-Poster можно вывести в любое удобное место (до которого хватит кабеля).

Если система собирается на коленке, то компьютерному энтузиасту могут потребоваться резиновые проставки под плату (9 шт).

И, наконец, плата имеет звуковую подсистему, которая выполнена в виде отдельной платки SupremeFX II:

Активность производителей наборов логики в последнее время просто удивляет. Чипсеты выходят одним за другим и, честно говоря, мы с трудом успеваем доводить до наших читателей все подробности об архитектуре и производительности этих новинок. Действительно, если еще в недалеком прошлом вся конкурентная борьба на рынке чипсетов происходила по большей части только между VIA и Intel, то за последнее время к ним присоединились AMD, SiS и ALi, которые начали выпуск вполне конкурентоспособных продуктов. Однако, похоже, это еще далеко не все. На рынок системных чипсетов теперь пытаются выйти совсем новые игроки. Например, весной этого года о выпуске своего первого чипсета для материнских плат объявила компания NVIDIA, до сих пор производившая исключительно графические чипсеты.
По заявлению представителей NVIDIA, настроенных крайне оптимистично, для компании разрабатывающей 3D ускорители, в состав которых входит подчас несколько десятков миллионов транзисторов, проектирование системной логики – задача крайне простоя. Тем более, что NVIDIA была разработчиком базового набора микросхем для игровой приставки от Microsoft, X-BOX, являющейся почти что полноценным PC. Однако, как оказалось, не все так просто. Несмотря на то, что NVIDIA обещала начало поставок материнских плат и систем на базе набора логики собственного изготовления еще в августе, только сейчас эти платы стали появляться в продаже. Ну а раз так, пришла пора провести всестороннее тестирование этого нового чипсета.
Первый чипсет от NVIDIA, названный nForce и поддерживающий Socket A процессоры от AMD, представляет собой интегрированный набор логики со встроенным графическим ядром GeForce2 MX. Однако и как дискретный набор логики nForce представляет значительный интерес, так как в нем реализовано несколько интересных технологий, в первую очередь относящихся к контроллеру памяти, поддерживающему DDR SDRAM. Поэтому, мы построим рассмотрение nForce следующим образом: сначала поговорим об особенностях nForce, как обычного чипсета, а затем отдельно исследуем его графическое ядро, звуковой контроллер и другие подобные возможности.

Основы

Семейство новых чипсетов от NVIDIA, nForce включает в себя два продукта, отличающихся реализацией шины памяти. Одной из ключевых особенностей nForce является так называемая TwinBank архитектура: nForce в общем случае имеет два независимых контроллера памяти, работающих с DDR SDRAM. Соответственно, в зависимости от числа задействованных контроллеров памяти, nForce позволяет организовать либо 64-битный доступ к памяти, либо двухканальный 128-битный.
Набор логики NVIDIA nForce состоит из двух микросхем, называемых в терминологии производителя «процессорами». Северный мост, Integrated Graphics Processor (IGP), объединяет в себе контроллер памяти, интегрированное графическое ядро GeForce2 MX, поддерживающий процессоры семейства Athlon/Duron интерфейс и AGP 4x интерфейс для подключения внешних видеокарт. Для того, чтобы отличать северные мосты с 64-битной шиной памяти и двухканальной 128-битной шиной, NVIDIA использует для них различную маркировку, IGP-128 и IGP-64 соответственно.
Южный мост, Media and Communication Processor (MCP) содержит аппаратный звуковой контроллер Audio Processor Unit (APU) с аппаратной поддержкой Dolby Digital, встроенный сетевой контроллер, PCI-контроллер, а также поддерживает типичные для современных южных мостов возможности: USB 1.1 порты, ATA-100 интерфейс, AC’97 интерфейс и т.п. Аналогично северным мостам, NVIDIA прелагает также и две версии южного моста: MCP-D с Dolby Digital 5.1 кодером и MCP – без него.
Северный и южный мосты в nForce соединяются последовательной шиной HyperTransport с топологией точка-точка.

Для лучшего понимания сравним возможности nForce с возможностями других современных DDR - наборов логики (возможности встроенной графики в рассмотрение пока не берутся).

* Версия южного моста, поддерживающего ATA-133 поставляется производителям материнских плат опционально.


Итак, глядя на представленную таблицу, можно отметить, что основными инновациями, реализованными в nForce являются:

Контроллер памяти, реализующий технологию TwinBank, позволяющую организацию двухканального 128-битного доступа к памяти. Отдельно следует отметить еще одну уникальную особенность этого контроллера, наличие Dynamic Adaptive Speculative Pre-Processor (DASP).
Использование шины HyperTransport для связи северного и южного моста.
Высокопроизводительное интегрированное графическое ядро GeForce2 MX.
Встроенный Audio Processing Unit (APU), аппаратный звуковой процессор совместимый с DirectX 8.0 и имеющий встроенный Dolby Digital 5.1 кодер.

В зависимости от того, в какой комбинации используются северные и южные мосты nForce, версия чипсета может иметь различные наименования:

Теоретически, как уже говорилось, nForce во многом повторяет набор системной логики, который NVIDIA спроектировала по заказу Microsoft для игровой приставки XBOX. Однако, необходимо понимать, что чипсет, используемый в игровой приставке поддерживает процессоры с архитектурой P3 и, соответственно, имеет отличную от nForce процессорную шину. Intel не предоставил NVIDIA лицензии на использование своих процессорных шин в наборах системной логики, поэтому, NVIDIA свой первый чипсет ориентировала под Socket A процессоры от AMD. Однако, не исключено что данная ситуация может измениться, и компания будет предлагать также и чипсеты под платформу Pentium 4: тут все в конечном итоге зависит от желания Intel.

Подробности: контролер памяти

Одной из главных особенностей nForce, выделяющей его по сравнению с другими наборами логики, является инновационный контроллер DDR памяти, позволяющий организацию двух независимых каналов передачи данных с суммарной шириной шины 128 бит. С учетом того, что набор микросхем nForce поддерживает память типа PC2100/PC1600 DDR SDRAM, пиковая пропускная способность подсистемы памяти у этого чипсета может достигать 4.2 Гбайт в секунду. То есть, среди всех сегодняшних наборов логики, ориентированных на применение в настольных PC, nForce обеспечивает наибольшую пропускную способность памяти, так как все остальные чипсеты имеют 64-битную шину памяти.
Посмотрим на то, как все это работает. nForce реализует так называемую TwinBank архитектуру. Это означает, что контроллер памяти, примененный в этом наборе логики, по сути напоминает Croosbar контроллер видеочипсета GeForce3 и попросту является расщепленным на два независимых контроллера MC0 и MC1.

То есть, для получения высокой пропускной способности подсистемы памяти NVIDIA не стала изобретать для своего набора логики новые типы памяти, а просто добавила в свой чипсет еще один контроллер DDR SDRAM. Следует отметить, что контроллеры MC0 и MC1 являются равноправными и полностью независимыми, поэтому они способны обрабатывать запросы одновременно. В результате, суммарная ширина шины памяти достигла 128 бит, однако в целом подсистема памяти nForce, благодаря наличию двух контроллеров памяти, осталась оптимизирована для работы с 64-битными пакетами данных. Это немаловажный факт, поскольку процессорная шина, используемая в Socket A системах, также имеет ширину 64 бита.
Благодаря равноправности и полной независимости MC0 и MC1, nForce позволяет работу с ассиметричными конфигурациями памяти, устанавливаемой на разные каналы. Например, модули DIMM, работающие с MC0 и MC1 могут иметь разную скорость, разную конфигурацию и разный объем. Более того, можно вообще не задействовать один из каналов, оставив второй контроллер памяти неиспользуемым. Как раз именно благодаря этому, NVIDIA с легкостью предлагает производителям материнских плат два варианта своего северного моста: IGP-128 с двумя контроллерами памяти и IGP-64 с одним незадействованным контроллером.
Преимущество TwinBank архитектуры nForce кажется очевидным. Значительный рост пропускной способности, казалось бы, должен обеспечить значительное превосходство в производительности этого набора логики над конкурентами. Однако, не все тут так просто, как кажется. Пиковая пропускная способность подсистемы памяти nForce составляет 4.2 Гбайт/с и в два раза превосходит пропускную способность процессорной шины 2.1 Гбайт/с. А это значит, что процессор сам по себе оказывается не в состоянии задействовать весь потенциал шины памяти nForce. Как мы видели на примере набора логики VIA Apollo Pro266, подобный перекос в пропускных способностях шин ни к чему хорошему не приводит: производительность по сравнению с системами, где пропускные способности шин памяти и процессора уравновешены, практически не возрастает.
Но инженеры NVIDIA оснастили nForce двумя контроллерами памяти все-таки неспроста. Не следует забывать о том, что nForce – это все же в первую очередь интегрированный чипсет, и высокие требования к пропускной способности памяти в системах на его основе будет предъявлять не только CPU, но и встроенное графическое ядро. Благодаря TwinBank архитектуре, подразумевающей наличие двух независимых 64-битных контроллеров памяти, графическое ядро и процессор могут работать с памятью независимо. А учитывая то, что графическое ядро, основанное на архитектуре GeForce2 MX, обладает сравнительно высоким быстродействием, необходимость производительной шины памяти становится очевидной.
Тем не менее, говорить о том, что 128-битная шина памяти nForce может быть задействована только лишь при использовании интегрированной графики не совсем верно. Теоретически, напрямую к памяти, минуя процессор, могут обращаться и некоторые другие устройства. Например, AGP-видеокарты или контроллеры, встроенные в южный мост чипсета. Для этих устройств, хотя они и не столь требовательны к пропускной способности памяти, архитектура TwinBank также может принести определенные дивиденды. Таким образом, если рассматривать nForce, как обычный неинтегрированный набор логики, наличие двух контроллеров памяти может позволить получить выигрыш в производительности в некоторых приложениях, интенсивно работающих с AGP графикой или использующих потоковые операции ввода-вывода с данными большого объема. В остальных случаях TwinBank архитектура, рассматриваемая отдельно от встроенного графического ядра, ряд ли может оказаться полезной.
Более того, если наличие двух независимых каналов памяти теоретически позволяет увеличить скорость записи данных в память, благодаря использованию техники чередования каналов, то операции чтения из памяти ускорятся далеко не всегда. Наоборот, из-за необходимости при каждом обращении «искать» данные в обоих банках, латентность подсистемы памяти, по сравнению с одноканальными системами, возрастает. О том, какое значение имеет латентность подсистемы памяти, говорилось уже не раз. Нередко более низкая латентность имеет для производительности в реальных приложениях даже большее значение, чем высокая пропускная способность памяти. А это значит, что nForce 220, в котором используется северный мост IGP-64 с одним каналом памяти, теоретически даже может превзойти по быстродействию nForce 420 с IGP-128 и двумя каналами.
Понятно, что подобные принципы распространяются не только на наборы логики от NVIDIA. И, если бы не некоторые дополнительные технологии, о которых пойдет речь ниже, двухканальный nForce вполне мог бы отставать не только от своего одноканального собрата, но и от DDR-чипсетов других производителей. Естественно, NVIDIA, привыкшую быть лидером во всем, такой расклад совершенно не устраивал. Поэтому, перед инженерами компании была поставлена задача найти путь к уменьшению латентности подсистемы памяти при операциях чтения.
И это решение было найдено. В NVIDIA nForce был добавлен дополнительный блок, имеющий название DASP – Dynamic Adaptive Speculative Pre-Processor. Задача DASP состоит в мониторинге обращений процессора к памяти и предсказанию, какие данные могут потребоваться CPU впоследствии. Используя возможности 128-битной шины памяти с двумя независимыми контроллерами, DASP параллельно с работой процессора извлекает эти данные из памяти и размещает их в специальном буфере, находящемся в северном мосту чипсета. В результате, в случае правильного предсказания, процессору при обращении к этим данным не приходится осуществлять доступ к памяти с относительно большой латентностью: необходимые данные уже находятся в чипсете. Поэтому, DASP существенно снижает латентность подсистемы памяти.

Как можно заметить, DASP представляет собой некий аналог технологии Data Prefetch, реализованной в современных процессорах. Однако DASP по сравнению с Data Prefetch имеет важное преимущество – его работа не сопряжена с дополнительной загрузкой процессорной шины. А поскольку шина памяти, которую загружает DASP, у nForce узким местом не является, работа этого блока не вызывает никаких коллизий, связанных с чрезмерной загрузкой каких-либо каналов передачи данных в чипсете.
Важно понимать, что DASP в nForce обрабатывает исключительно обращения процессора, а данные, которые могут требоваться, например, графическому ядру или внешней AGP-видеокарте в буфер не попадают. Этим устройствам, поскольку они гораздо менее критичны к высокой латентности памяти, нежели CPU, приходится работать с памятью напрямую.
Именно DASP, а не TwinBank архитектура является главной технологией, влияющей на производительность nForce. При использовании с nForce внешней графической карты высокая пропускная способность шины памяти оказывается практически бесполезной, потому что процессор задействовать ее в полную силу не может из-за ограничений, накладываемых пропускной способностью процессорной шины. Современные же AGP-видеокарты используют для хранения текстур локальную видеопамять, поэтому с системной памятью они взаимодействуют не активно. DASP же позволяет уменьшить латентность подсистемы памяти независимо ни от чего. И единственное, о чем приходится жалеть – это о небольшом размере буфера, используемого DASP. В современной версии nForce его объем составляет всего 64 Кбайта, но и этого оказывается вполне достаточно для того, чтобы nForce показывал великолепную производительность.

Подробности: Hypertransport

На настоящий момент практически все производители наборов логики отказались от использования шины PCI для организации связи между северным и южным мостом. Исключение составляет разве что компания ALi, но и в ее ближайших планах – отказ от применения для этой цели PCI. Что же побуждает производителей чипсетов искать альтернативные решения? Ответ, как всегда, несложен. Пропускной способности шины PCI, 133 Мбайт в секунду, перестает хватать для того, чтобы все контроллеры, сосредоточенные в южном мосту могли беспрепятственно связываться с северным мостом. Посмотрим, например, чем нашпиговала свой южный мост (или, в терминологии компании, MCP) NVIDIA.

Помимо традиционных для южных мостов PCI моста, двухканального ATA-100 контроллера, пары USB-хабов, интегрированного программного модема, 6-канального AC’97 кодека и LPC-устройств, MCP содержит и пару относительно уникальных вещей. Во-первых, это сетевой контроллер для 10/100 Mбит Ethernet и HomePNA 2.0, а во-вторых, APU (Audio Processor Unit). Именно наличие этих двух блоков в южном мосту заставило NVIDIA искать для соединения мостов своего nForce решение, гарантирующее более высокую, чем у PCI, пропускную способность.
Имея в виду, что APU – это полноценный совместимый с DirectX 8.0 аппаратный звуковой контроллер, поддерживающий позиционное 3D аудио и имеющий Dolby Digital 5.1 кодер, можно считать, что это устройство способно «отъесть» от пропускной способности шины до 150 Мбайт в секунду. В свете этого NVIDIA сразу обратила внимание на высокоскоростные шины. Ну и поскольку NVIDIA принимала активное участие в разработке технологии Hypertransport, совершенно неудивительно, что в nForce для связи мостов была выбрана именно эта шина.
Вообще, Hypertransport – это двухпортовая последовательная шина с шириной от 2 до 32 бит, предназначенная для организации соединения типа точка-точка. В nForce для связи мостов используется Hypertransport с шириной 8 бит и частотой 200 МГц. Учитывая, что протокол Hypertransport предполагает передачу данных по обоим фронтам сигнала, получаем, что пропускная способность шины при передаче данных в одном направлении – 400 Мбайт в секунду. NVIDIA же оперирует более крупным числом, 800 Мбайт/с, однако это всего-навсего означает, что пропускная способность соединения между мостами в nForce 400 Мбайт/с в обоих направлениях.

Подробности: референс-плата

Также, как и при создании видеочипсетов, вместе с набором логики nForce, NVIDIA разработала и референс-дизайн материнской платы на его основе. Отметим, что этот референс-дизайн будет использоваться рядом производителей плат для выпуска своих продуктов, использующих nForce, и поэтому референс-плата от NVIDIA заслуживает подробного рассмотрения.

Референс-дизайн материнской платы на базе чипсета nForce выполнен в MicroATX форм-факторе. И это сразу говорит о многом. NVIDIA видит основное применение своего nForce в первую очередь как удобного решения для сборщиков компьютеров, потому и выбрала именно MicroATX формат. Впрочем, отчасти компания права. Собирать компьютеры на платах с чипсетом nForce действительно удобно: одна материнская плата сразу исключает необходимость и в видеокарте с неплохой производительностью, и в качественной звуковой карте, и даже в сетевом контроллере и модеме. Поэтому, несмотря на относительно высокую стоимость, сборщики PC должны будут полюбить nForce, как хорошую платформу для домашних компьютеров средней стоимости.
Однако, использование Micro ATX форм-фактора неотвратимо влечет за собой урезание возможностей для расширения. Действительно, на референс-плате помимо слотов для памяти и AGP 4x слота поместилось всего два слота PCI и один слот ACR. Впрочем, для материнской платы, на которой интегрированы все мыслимые устройства, такого количества слотов расширения может быть вполне достаточно.
Референс плата использует северный мост IGP-128.

Как следует из названия, эта версия северного моста поддерживает 128-битную шину памяти и TwinBank архитектуру. Три имеющихся на плате 184-контактных слота DDR DIMM делятся между контроллерами следующим образом: к первому контроллеру памяти MC0 относится первый слот DIMM, а ко второму контроллеру памяти MC1 – второй и третий слоты. Легким намеком на это является, кстати, несколько обособленное расположение на плате первого слота DIMM. Таким образом, при установке модулей памяти в первый и во второй или третий слоты DIMM, плата будет использовать 128-битный доступ к памяти. Если же используется только один модуль DDR DIMM, или же два модуля, установленные во второй и третий слоты – шина памяти имеет ширину 64 бита, как у классических наборов логики, и второй контроллер памяти северного моста отключается.
Заметим, что на северном мосту на референс-плате нет никакого радиатора, и, в принципе, несмотря на это плата работает стабильно. Однако, чип при этом раскаляется до такой температуры, что его дальнейшая судьба невольно начинает вызывать беспокойство. Поэтому, на серийных платах северный мост будет снабжаться чипсетным кулером.
В качестве южного моста для референс платы NVIDIA выбрала чип MCP-D, обладающий встроенным Dolby Digital 5.1 кодером, о чем свидетельствует литера «D» в названии моста.

Несмотря на то, что южный мост поддерживает шестиканальный 3D звук, цифровой выход для усилителя с Dolby Digital декодером, 10/100 Мбит Ethernet и программный модем, на самой референс-плате нет никаких разъемов для реализации работы всех этих устройств. Все необходимые коннекторы располагаются на дополнительной райзер-карте, входящей в комплект и устанавливаемой в слот ACR.

Здесь можно видеть место для монтажа цифрового аудиовыхода, два аналоговых аудиовыхода для подключения задних колонок, центральной колонки и сабвуфера, разъем для присоединения телефонной линии и сетевой RJ45 коннектор.
Плата использует Phoenix BIOS, обладающий только лишь самым необходимым минимумом настроек: о разгоне можно забыть.

Как мы тестировали

Поскольку данный материал посвящен рассмотрению NVIDIA nForce в качестве дискретного решения, все тесты выполнялись со внешней видеокартой и отключенным интегрированным графическим ядром. Мы протестировали референс-плату на базе nForce в двух режимах: при 128-битном доступе к памяти, когда задействованы оба контроллера памяти, и при 64-битном доступа к памяти, когда один из контроллеров памяти отключен. Таким образом, мы получим возможность судить о производительности как nForce 420, так и nForce 220, поскольку эти два варианта набора логики от NVIDIA отличаются лишь шириной шины памяти.
Производительность NVIDIA nForce сравнивалась с быстродействием других современных DDR Socket A наборов логики: VIA KT266A, SiS 735 и Ali MAGiK 1 ревизии C.
Тестовые системы были сконфигурированы следующим образом:

На тестовых системах была установлена операционная система Microsoft Windows XP.
Результаты тестов встроенного в nForce графического ядра, звукового и IDE контроллеров будут приведены во второй части данного обзора.

Производительность

Теория - теорией, пора переходить к практике. В первую очередь, как и всегда, - синтетические тесты производительности подсистемы памяти.

В первую очередь отметим, что даже синтетический тест, такой как SiSoft Sandra, не показывает значительного превосходства пропускной способности двухканальной памяти nForce 420 над другими чипсетами, работающими с 64-битной шиной памяти. Как мы видим, процессор в одиночку не может задействовать всю пропускную способность шины памяти nForce 420. Таким образом, все прелести TwinBank архитектуры могут быть раскрыты только при использовании встроенного графического ядра nForce, которое, наряду с процессором, является одним из самых активно использующих память компонентов. Когда же встроенное графическое ядро не используется, как, например, в нашем случае, даже синтетический тест показывает всего лишь 5-процентное превосходство практической пропускной способности чипсета с 128-битной шиной над аналогичным чипсетом с шиной шириной 64 бита.
Также, немаловажно отметить, что оба nForce, и 420, и 220, ощутимо обгоняют остальных участников тестирования. И дело тут уже не в ширине шины памяти. Разрыв в 10% между показателями nForce 220 и VIA KT266A можно списать лишь на DASP, поскольку эта модификация чипсета от NVIDIA не имеет 128-битной шины памяти. Как показывают результаты, эффективность DASP чрезвычайно высока: применение этой технологии позволило NVIDIA создать Socket A чипсет с самой быстродействующей подсистемой памяти.
Однако, лидерство в пропускной способности подсистемы памяти, измеряемой тестом SiSoft Sandra 2001 – еще не ключ к победе. Как мы неоднократно отмечали, наряду с пропускной способностью на производительность системы оказывает значительное влияние и латентность памяти. Посмотрим, как обстоит дело у nForce с ней.

И тут nForce просто нет равных. Направленный в первую очередь на уменьшение латентности DASP попадает точно в цель.
Также заметим, что как это не кажется странным на первый взгляд, набор логики nForce 220 с одним контроллером памяти и 64-битной шиной имеет меньшую латентность, чем nForce 420 с двумя контроллерами памяти и 128-битной шиной. Однако, ничего удивительного в этом нет. Поскольку NVIDIA ставила перед собой задачу создать такую подсистему памяти, которая была бы способна обеспечивать данными несколько «потребителей» одновременно (например, CPU и GPU), компания не стала применять в своем наборе логики классическую технику чередования каналов (interleaving). Контроллеры памяти в nForce 420 полностью независимы и, в отличие например от того же i850, позволяют установку модулей DIMM разной конфигурации в разные банки памяти. Поэтому, перед тем, как извлечь данные из памяти в случае использования двух каналов, специальному арбитру приходится решать, какой из контроллеров должен обрабатывать пришедший запрос. На это как раз и уходят дополнительные такты. Поэтому, в ряде случаев nForce 220 с более узкой шиной памяти может оказаться быстрее nForce 420 с более широкой шиной.
В синтетических тестах nForce смотрится неплохо. Посмотрим, как же он себя поведет в реальных приложениях.

Тест SYSmark 2001, показывающий средневзвешенную производительность систем в типичных офисных задачах и приложениях создания контента, подтверждает результаты синтетических тестов. nForce, хоть и не так значительно, превосходит по скорости другие чипсеты. Однако следует понимать, что для тех приложений, которые используются в SYSmark 2001, важна не только скорость памяти, также немалое влияние на результат оказывает, например, и производительность дисковой подсистемы. Плюс к этому, преимущества более быстрой системы памяти видны только при операциях с большими объемами данных, не умещающихся в кеше CPU.

Например, в Internet Content Creation части теста, где приложения используют большие объемы последовательно хранящихся данных, nForce не так уж и быстр, поскольку влияние латентности в задачах такого класса сведено к минимуму, а реализоваться высокой пропускной шине памяти nForce 420 не дает ограничение, налагаемое пропускной способностью процессорной шины.

В офисной же части того же теста наоборот, оба nForce опережают обоих соперников более существенно: тут уже играет свою роль низкая латентность подсистемы памяти этого чипсета. В частности, превосходство nForce 420 над прошлым лидером наших тестирований, VIA KT266A, составляет 4%.

Для составления полной картины соотношения сил в офисных задачах мы также измерили скорость архивации большого количества информации (директории с установленной игрой Unreal Tournament) популярным архиватором WinZIP при обычном уровне компрессии. Смысл этого теста заключается в том, что помимо постоянных обращений к памяти архиватор также постоянно работает с дисковой подсистемой. Поэтому, результаты, показанные системами здесь, позволяют оценить в том числе и качество IDE Bus Master драйверов. На диаграмме выше отображено время выполнения архивации, поэтому меньший результат соответствует лучшей производительности.

Также, нами была замерена производительность при кодировании DVD видеопотока в формат DivX MPEG-4. Этот тест замечателен тем, что модификация nForce 220 с 64-битной шиной памяти в нем оказалась быстрее своего 128-битного аналога nForce 420. Хотя эта разница очень мала, факт остается фактом: такое возможно не только в теории, но и на практике.
Следующим этапом наших испытаний является измерение быстродействия систем в играх.

Обратите внимание, результаты nForce 420 и nForce 220 в этом тесте практически одинаковы. То есть даже Quake3, производительность в котором сильно зависит от быстродействия подсистемы памяти, не может использовать преимущества, предоставляемые архитектурой TwinBank, при условии, что в системе используется внешняя видеокарта. DASP же, присутствующий в обоих nForce, придает им неплохое ускорение: оба nForce опережают ближайшего конкурента, VIA KT266A на 4.5%.

При увеличении разрешения и доведения его до обычно используемого среднестатистическими игроками, разница в производительности нивелируется. Два контроллера памяти не помогают nForce 420 и в этом случае.

Картина в Unreal Tournament повторяет результаты, которые мы уже видели в Quake3. Правда, теперь преимущество nForce220 над nForce 420 немного увеличилось и уже не может быть списано на тривиальную погрешность измерений.

Мы любим использовать игру DroneZ при тестировании чипсетов в первую очередь потому, что она очень чутко реагирует на скорость работы памяти. Поэтому, неудивительно, что DASP дает обоим nForce возможность обогнать VIA KT266A на целых 7%, что для наборов системной логики является достаточно крупной победой. Также, отметим, что в очередной раз nForce 220 удалось обойти своего старшего брата, nForce 420 примерно на 2 fps.

Профессиональный OpenGL бенчмарк SPECviewperf 6.2.1 является тестом, производительность в котором сильно зависит от пропускной способности памяти. Поэтому, никого не должно удивлять, что во всех задачах, входящих в этот тест, nForce 420 обгоняет nForce 220. Однако, следует отметить, что при этом результаты nForce 420 оказываются не такими уж и выдающимися, несмотря на вдвое более широкую, чем у других наборов логики, шину памяти. В Awadvs-04 и DRV-07 nForce 420 отстает от VIA KT266A. Что же касается младшей версии, nForce 220, то ее производительность в первых трех подтестах вообще чуть ли не самая худшая. Думается, причина такого результата кроется в том, что 64-килобайтный буфер, используемый DASP, оказывается совершенно бесполезен при передаче большого объема информации, хранящейся в памяти последовательно.

Выводы

Подобьем бабки. Как показало наше исследование, nForce, пока рассматриваемый отдельно от своего графического ядра как дискретный набор логики, чрезвычайно продвинутый и самый производительный Socket A чипсет среди присутствующих сегодня на рынке. Хотя он и оказался лидером благодаря прогрессивным технологиям, примененным NVIDIA, следует отметить следующее. Главным элементом nForce, из-за которого этот чипсет показал высокое быстродействие, является DASP. Единственное «но», которое можно сказать в адрес этого блока – недостаточный размер буфера, которого не хватает для профессиональных OpenGL приложений. Twinbank архитектура же, как показали тесты, оказалась совершенно бесполезна в случаях, когда не используется встроенное графическое ядро.
Таким образом, для применения в системах со внешними графическими ускорителями версия nForce 220 подходит больше, чем nForce 420. Производительность nForce 220 в большинстве тестов практически такая же, как у nForce 420, а в ряде задач nForce 220 даже обгоняет своего старшего собрата. При этом, стоимость плат, основанных на nForce 220 должна быть ниже из-за отсутствия второго контроллера памяти и сопутствующей разводки. nForce 420 же стоит воспринимать в таком случае как, в первую очередь, интегрированное решение.
Что касается рыночных перспектив nForce вообще, то тут остается масса неясностей. Если вы готовы ради дополнительных 3-7% производительности выложить в полтора раза большую сумму за материнскую плату, а потом не пользоваться «оплаченной» встроенной видеокартой, то nForce – набор логики для вас. Если же вы ищите подходящее решение с точки зрения соотношения цена-производительность, то nForce тут вам не товарищ.
И в заключение еще раз напомню, что все вышесказанное относится к nForce, как дискретному набору логики. Интегрированные возможности этого чипсета, такие как видео, звук и пр. мы рассмотрим позднее, в следующей части этого материала.