Цифровая обработка сигналов на ARM7-микроконтроллерах. Практическое применение преобразования фурье для обработки сигналов Когда задач много

Введение

Книги и публикации по цифровой обработке сигналов пишут авторы зачастую не догадывающиеся и не понимающие задач, стоящих перед разработчиками. Особенно это касается систем, работающих в реальном времени. Эти авторы отводят себе скромную роль бога, существующего вне времени и пространства, что вызывает некоторое недоумение у читателей подобной литературы. Данная публикация имеет целью развеять недоумения, возникающие у большинства разработчиков, и помочь им преодолеть «порог вхождения», для этих целей в тексте сознательно используется аналогии и терминология сферы программирования.

Данный опус не претендует на полноту и связность изложения.

Добавлено после прочтения комментариев.
Публикаций о том как делать БПФ немеряно, а о том как сделать БПФ, преобразовать спектр, и собрать сигнал заново, да еще и в реальном времени, явно не хватает. Автор пытается восполнить этот пробел.

Часть первая, обзорная

Существуют два основных способа построения дискретных линейных динамических систем. В литературе, такие системы принято называть цифровыми фильтрами, которые подразделяются на два основных типа: фильтры с конечной импульсной характеристикой (КИХ) и фильтры с бесконечной импульсной характеристикой (БИХ).

Алгоритмическая сущность фильтра с КИХ заключается в дискретном вычислении интеграла свертки:

Где x(t) – входной сигнал
y(t) – выходной сигнал
h(t) – импульсная характеристика фильтра или реакция фильтра на дельта функцию. Импульсная характеристика является обратным преобразованием Фурье комплексной частотной характеристики фильтра K(f).

Для формирования ясной картины у читателя, приведем пример дискретного вычисления интеграла свертки на языке С в реальном времени.

#define L (4) //длинна фильтра int FIR(int a) { static int i=0; //текущая позиция static int reg[L]; //массив входных значений static const int h[L]={1,1,1,1};//импульсная характеристика int b=0;//выходное значение reg[i]=a; //копируем входное значение в массив входных значений for(int j=0;j

Вызывая данную функцию через определенные интервалы времени T и передавая ей в качестве аргумента входной сигнал, на выходе мы получим выходной сигнал, соответствующий реакции фильтра с импульсной характеристикой вида:

H(t)=1 при 0 h(t)=0 в остальных случаях.

Всем собравшимся фильтр с такой импульсной характеристикой более известен под названием «фильтр скользящего среднего», и, соответственно, реализуется он гораздо проще. В данном случае такая импульсная характеристика используется для примера.

Синтезу импульсных характеристик КИХ фильтров посвящена масса литературы, также имеются готовые программные продукты для получения фильтров с заданными свойствами. Автор предпочитает глючный инструмент Filter Design из пакета Matlab, но это дело вкуса.

Используя фильтр с конечной импульсной характеристикой, удается немножечко воспарить над привычной реальностью, так как, в природе не существует динамических систем, имеющих конечную импульсную характеристику. Фильтр КИХ - попытка зайти в частотно-временную область с другого конца, не так как ходит природа, поэтому частотные характеристики этих фильтров зачастую обладают неожиданными свойствами.

Намного ближе к природе фильтры с бесконечной импульсной характеристикой. Алгоритмическая сущность фильтров с бесконечной импульсной характеристикой сводится к рекуррентному (не путать с рекурсивным!) решению дифференциального уравнения, описывающего фильтр. То есть, каждое последующие значение выходного сигнала фильтра вычисляется на основании предыдущего значения. Именно так протекают процессы в реальном мире. Камень, падая с небоскреба каждую секунду, увеличивает свою скорость на 9.8м/с Speed=Speed+9.8, и пройденный путь каждую секунду увеличивается Distance=Distance+Speed. Кто скажет, что это не рекуррентный алгоритм, пусть первый бросит в меня камень. Только в нашей Матрице временной интервал вызова функции возвращающей положение камня много меньше цены деления доступных нам средств измерения.

Отдельно хотелось бы определить понятие «порядок фильтра». Это количество переменных которые подвергаются рекуррентным операциям. В приведенном примере функция, возвращающая скорость камня - первого порядка, функция, возвращающая пройденный путь - второго порядка.

Для окончательного просветления читателя приведем пример на языке С самого простого фильтра низких частот, широко известного как фильтр «фильтр экспоненциального сглаживания»

#define alfa (2) //параметр сглаживания int filter(int a) { static int out_alfa=0; out_alfa=out_alfa - (out_alfa >>alfa) + a; return (out_alfa >> alfa); }

Вызывая данную функцию с частотой F и передавая ей в качестве аргумента входной сигнал, на выходе мы получим выходной сигнал, соответствующий реакции фильтра низких частот первого порядка с частотой среза:

Приведенный пример исходного кода совершенно неудобоварим с точки зрения понимания сути алгоритма. С точки зрения рекуррентной сути (смотри «падение камня») алгоритма, правильнее y=y+((x-y)>>alfa);, но в этом случае происходит потеря alfa значащих разрядов. Рекуррентное выражение фильтра, из примера кода, построено таким образом, чтобы избежать потери значащих разрядов. Именно конечная точность вычислений может испортить всю прелесть цифрового фильтра с бесконечной импульсной характеристикой. Особенно это заметно на фильтрах высоких порядков, отличающихся высокой добротностью. В реальных динамических системах такая проблема не возникает, наша Матрица производит вычисления с невероятной для нас точностью.

Синтезу подобных фильтров посвящена масса литературы, также имеются готовые программные продукты (см. выше).

Часть вторая. Фурье – фильтр

Из вузовских курсов (у вашего покорного слуги это был курс ОТЭЦ) многие собравшие помнят два основных подхода к анализу линейных динамических систем: анализ во временной области и анализ в частотной области. Анализ во временной области - это решение дифференциальных уравнений, интегралы свертки и Дюамеля. Эти методы анализа дискретно воплотились в цифровых фильтрах БИХ и КИХ.

Но существует частотный подход к анализу линейных динамических систем. Иногда его называют операторным. В качестве операторов используются преобразование Фурье, Лапласа и т.п. Далее мы будем говорить только о преобразовании Фурье.

Данный метод анализа не получил широкого распространения при построении цифровых фильтров. Автору не удалось найти вменяемых практических рекомендаций по построению подобных фильтров на русском языке. Единственное краткое упоминание такого фильтра в практической литературе [Рабинер Л., Гоулд Б., Теория и применение цифровой обработки сигналов 1978], но в данной книге рассмотрение подобного фильтра очень поверхностно. В указанной книге данная схема построения фильтра называется: «свертка в реальном времени методом БПФ», что, по моему скромному мнению, совершенно не отражает сути, название должно быть коротким, иначе времени на отдых не останется.

Реакция линейной динамической системы есть обратное преобразование Фурье от произведения изображения по Фурье входного сигнала x(t) на комплексный коэффициент передачи K(f):

В практическом плане, данное аналитическое выражение предполагает следующий порядок действий: берем преобразование Фурье от входного сигнала, умножаем результат на комплексный коэффициент передачи, выполняем обратное преобразование Фурье, результатом которого является выходной сигнал. В реальном дискретном времени такой порядок действий выполнить невозможно. Как брать интеграл по времени от минус до плюс бесконечности?! Его можно взять только находясь вне времени…

В дискретном мире для выполнения преобразования Фурье существует инструмент - алгоритм быстрого преобразования Фурье (БПФ). Именно его мы и будем использовать при реализации нашего Фурье-фильтра. Аргументом функции БПФ является массив временных отсчетов из 2^n элементов, результатом два массива длинной 2^n элементов соответствующие действительной и мнимой части преобразования Фурье. Дискретной особенностью алгоритма БПФ является то, что входной сигнал считается периодичным с интервалом 2^n. Это накладывает некоторые ограничения на алгоритм Фурье-фильтра. Если взять последовательность выборок входного сигнала, провести от них БПФ, умножить результат БПФ на комплексный коэффициент передачи фильтра и выполнить обратное преобразование …ничего получится! Выходной сигнал будет иметь огромные нелинейные искажения в окрестности стыков выборок.

Для решения этой проблемы необходимо применить два приема:

  • 1. Выборки необходимо обрабатывать преобразованием Фурье с перекрытием. То есть, каждая последующая выборка должно содержать часть предыдущей. В идеальном случае выборки должны перекрываться на (2^n-1) отсчетов, но это требует огромных вычислительных затрат. На практике, с лихвой, достаточно трехчетвертного (2^n-2^(n-2)), половинного (2^(n-1)) и даже четвертного перекрытия (2^(n-2)).
  • 2. Результаты обратного преобразования Фурье, для получения выходного сигнала, необходимо, перед наложение друг на друга, умножить на весовую функцию (массив весовых коэффициентов). Весовая функция должна удовлетворять следующим условиям:
  • 2.1 Равна нулю везде, кроме интервала 2^n.
  • 2.2 На краях интервала стремится к нулю.
  • 2.3 И, самое главное, сумма весовых функций Fv(t), сдвинутых на интервал перекрытия k должна быть постоянна:

Такие функции широко применяются в технике цифровой обработки сигналов, и называть их принято - окнами. По скромному мнению автора лучшим, с практической точки зрения, является окно имени Хана:

На рисунке приведены графики иллюстрирующие свойства окна Хана длинной 2^n=256. Экземпляры окна построены с половинным перекрытием k=128. Как видно все оговоренные выше свойства имеются в наличии.

По просьбам трудящихся, на следующем рисунке приведена схема вычислений Фурье-фильтра, при длине выборки 2^n=8, количество выборок 3. На подобных рисунках очень сложно отобразить процесс вычислений, особенно тяжело показать его цикличность, поэтому мы и ограничились количеством выборок равным трем.

Входной сигнал разбивается на блоки длинной 2^n=8 с перекрытием 50%, от каждого блока берется БПФ, результаты БПФ подвергаются нужной трансформации, берется обратное БПФ, результат обратного БПФ скалярно умножается на окно, после умножения блоки складываются с перекрытием.

При выполнение трансформаций спектра, не стоит забывать о главном свойстве массива БПФ действительных сигналов, первая половина массива БПФ комплексно сопряжена со второй половиной, т.е Re[i]=Re[(1<

Теперь мы знаем все, что необходимо для написания алгоритма Фурье-фильтра. Опишем алгоритм на языке С.

#include #define FSempl (8000)//частота семплирования Гц #define BufL (64) //длинна буфера обработки #define Perk (2) //перекрытие кадров 2-1/2, 4-3/4 //ограничение спектра, полосовой фильтр #define FsrLow (300)//нижняя частота фильтра Гц #define FsrHi (3100)//верхняя частота фильтра Гц #define FsrLowN ((BufL*FsrLow+(FSempl/2))/FSempl)//нижняя частота в гармониках #define FsrHiN ((BufL*FsrHi +(FSempl/2))/FSempl)//верхняя частота в гармониках //Сдвиг спектра #define SdvigSp (0)//сдвиг спектра в гармониках +(вниз) -(вверх) 0(без сдвига) //Фильтр спектра во времени, эхо #define FilterSpekrtaT_EN (1)//использовать фильтр спектра 1/0 #define FiltSpektrFsr (0.100025f) //частота среза фильтра спектра volatile unsigned short ShBuf;//счетчик входного буфера signed short BufIn;//входной буфер signed short BufOut;//выходной буфер signed short BufInOut;//буфер для перезаписи float FurRe;//Фурье действительная часть float FurIm;//Фурье мнимая часть #if (FilterSpekrtaT_EN!=0) float FStektr;//фильтр амплитудного спектра #endif //Таблица синуса косинуса #if BufL==64 const float SinCosF= { 0.000000000 , 0.098017140 , 0.195090322 , 0.290284677 , 0.382683432 , 0.471396737 , 0.555570233 , 0.634393284 , 0.707106781 , 0.773010453 , 0.831469612 , 0.881921264 , 0.923879533 , 0.956940336 , 0.980785280 , 0.995184727 , 1.000000000 , 0.995184727 , 0.980785280 , 0.956940336 , 0.923879533 , 0.881921264 , 0.831469612 , 0.773010453 , 0.707106781 , 0.634393284 , 0.555570233 , 0.471396737 , 0.382683432 , 0.290284677 , 0.195090322 , 0.098017140 , 0.000000000 , -0.098017140, -0.195090322, -0.290284677, -0.382683432, -0.471396737, -0.555570233, -0.634393284, -0.707106781, -0.773010453, -0.831469612, -0.881921264, -0.923879533, -0.956940336, -0.980785280, -0.995184727, -1.000000000, -0.995184727, -0.980785280, -0.956940336, -0.923879533, -0.881921264, -0.831469612, -0.773010453, -0.707106781, -0.634393284, -0.555570233, -0.471396737, -0.382683432, -0.290284677, -0.195090322, -0.098017140, 0.000000000 , 0.098017140 , 0.195090322 , 0.290284677 , 0.382683432 , 0.471396737 , 0.555570233 , 0.634393284 , 0.707106781 , 0.773010453 , 0.831469612 , 0.881921264 , 0.923879533 , 0.956940336 , 0.980785280 , 0.995184727 }; #endif //таблица сортировки БПФ #if BufL==64 const unsigned short sortFFT= { 0x0000,0x0020,0x0010,0x0030,0x0008,0x0028,0x0018,0x0038, 0x0004,0x0024,0x0014,0x0034,0x000C,0x002C,0x001C,0x003C, 0x0002,0x0022,0x0012,0x0032,0x000A,0x002A,0x001A,0x003A, 0x0006,0x0026,0x0016,0x0036,0x000E,0x002E,0x001E,0x003E, 0x0001,0x0021,0x0011,0x0031,0x0009,0x0029,0x0019,0x0039, 0x0005,0x0025,0x0015,0x0035,0x000D,0x002D,0x001D,0x003D, 0x0003,0x0023,0x0013,0x0033,0x000B,0x002B,0x001B,0x003B, 0x0007,0x0027,0x0017,0x0037,0x000F,0x002F,0x001F,0x003F }; #endif //Таблица окно Хана #if BufL==64 const float WinHanF= { 0.0 , 0.002407637 , 0.00960736 , 0.021529832 , 0.038060234 , 0.059039368 , 0.084265194 , 0.113494773 , 0.146446609 , 0.182803358 , 0.222214883 , 0.264301632 , 0.308658284 , 0.354857661 , 0.402454839 , 0.45099143 , 0.5 , 0.54900857 , 0.597545161 , 0.645142339 , 0.691341716 , 0.735698368 , 0.777785117 , 0.817196642 , 0.853553391 , 0.886505227 , 0.915734806 , 0.940960632 , 0.961939766 , 0.978470168 , 0.99039264 , 0.997592363 , 1.0 , 0.997592363 , 0.99039264 , 0.978470168 , 0.961939766 , 0.940960632 , 0.915734806 , 0.886505227 , 0.853553391 , 0.817196642 , 0.777785117 , 0.735698368 , 0.691341716 , 0.645142339 , 0.597545161 , 0.54900857 , 0.5 , 0.45099143 , 0.402454839 , 0.354857661 , 0.308658284 , 0.264301632 , 0.222214883 , 0.182803358 , 0.146446609 , 0.113494773 , 0.084265194 , 0.059039368 , 0.038060234 , 0.021529832 , 0.00960736 , 0.002407637 }; #endif //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //Вычисление прямого Быстрого Преобразования Фурье //аргументы //указатель на массив для действительной ReFT и мнимой части ImFT //После выполнения массивы содержат коэф. действительной и мнимой части void FFTnoInv(float* ReFT,float* ImFT) { //копирование и перестановка for(int i=0;i>1; long arg=0; //аргумент ядра, фаза for(int j=0;j>1; long arg=0;////аргумент ядра, фаза for(int j=0;j0 //сдвиг спектра вниз, Карабас-Барабас for(int i=1;i<(BufL/2);i++) { if(i>=(BufL/2-SdvigSp)) { FurRe[i]=FurIm[i]=0; FurRe=FurIm=0; continue; } FurRe[i]=FurRe; FurIm[i]=FurIm; FurRe=FurRe[i]; FurIm=-FurIm[i]; } #endif #if SdvigSp<0 //сдвиг спектра вверх, Буратино for(int i=(BufL/2-1);i>0;i--) { if(i<=(-SdvigSp)) { FurRe[i]=FurIm[i]=0; FurRe=FurIm=0; continue; } FurRe[i]=FurRe; FurIm[i]=FurIm; FurRe=FurRe[i]; FurIm=-FurIm[i]; } #endif //обрезание спектра, полосовой фильтр FurRe=0.0F;FurIm=0.0F; //постоянная составляющая FurRe[(BufL/2)]=0.0F;FurIm[(BufL/2)]=0.0F;//последняя гармоника float ZnStektr;//амплитудный спектр кадра for(int i=1;i<(BufL/2);i++) { if((i < FsrLowN)//нижняя частота || (i > FsrHiN)//верхняя частота) { //обрезание спектра, гармоники вне полосы зануляем FurRe[i]=0.0F;FurIm[i]=0.0F;//прямые гармоники FurRe=0.0F;FurIm=0.0F;//сопряженные гармоники } else //считаем амплитудный спектр не обрезанной части { ZnStektr[i]=sqrtf(FurRe[i]*FurRe[i])+(FurIm[i]*FurIm[i]);//амплитудный спектр } } //фильтр амплитудного спектра во времени, эхо for(int i= FsrLowN;//нижняя частота i<=FsrHiN ;//верхняя частота i++) { #if FilterSpekrtaT_EN!=0 //фильтр спектра во времени, эхо FStektr[i]=FStektr[i]+ FiltSpektrFsr*(ZnStektr[i]-FStektr[i]); #endif //переходим от модуля к комплексному числу FurRe[i]=FurRe=(FStektr[i]*FurRe[i])/ZnStektr[i]; FurIm[i]=(FStektr[i]*FurIm[i])/ZnStektr[i]; FurIm=-FurIm[i]; } //выполняем обратное БПФ FFTInv(FurRe,FurIm); //копирование буферов for(int i=0;i<(BufL);i++) { BufInOut[i]=((signed short)(FurRe[i]+0.5f)); } } //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //Фурье фильтр signed short FureFilter(signed short t1) { //записываем во входной буфер BufIn=t1; //выходное значение signed short out=BufOut; //инкремент указателя буфера ShBuf=(ShBuf+1)&((BufL*2)-1); //если в буфере часть кадра обработки if((ShBuf&((BufL/Perk)-1))==0) { //переписываем буфер обработки в выходной буфер int ShTmpOut=ShBuf; int ShTmpIn=(ShBuf-BufL)&((BufL*2)-1); for(int i=0;i<(BufL);i++) { if(i<(BufL-(BufL/Perk))) { //переписываем первую часть буфера обработки в выходной буфер BufOut=BufOut+BufInOut[i]; } else { //переписываем вторую часть буфера обработки в выходной буфер BufOut=BufInOut[i]; } //инкремент указателя выходного буфера ShTmpOut=(ShTmpOut+1)&((BufL*2)-1); //переписываем входной буфер в буфер обработки BufInOut[i]=BufIn; //инкремент указателя входного буфера ShTmpIn=(ShTmpIn+1)&((BufL*2)-1); } }//конец if((ShBuf&((BufL/Perk)-1))==0) //вызов функции обработки //в на реальном процессоре распараллелить! if((ShBuf&((BufL/Perk)-1))==0)ObrBuf(); return out; }

Вызывая функцию FureFilter() с частотой FSempl и передавая ей в качестве аргумента входной сигнал, результатом получим выходной сигнал. В данном примере входной сигнал обрабатывается следующим образом: сигнал пропускается через полосовой фильтр с частотами среза FsrLow, FsrHi, подавляются все спектральные составляющие выше и ниже указанных частот, сдвигается спектр сигнала (для звуковых сигналов это воспринимается как эффект Буратино-Карабаса), амплитудный спектр сигнала подвергается сглаживанию фильтром низких частот (для звука это эффект гулкого помещения). Данные действия с сигналом выполнены в качестве примера, для того чтобы показать технические приемы обработки сигнала в частотной области, такие как: соблюдение комплексно-сопряженности коэффициентов, восстановление комплексного спектра по амплитудному, не используя тригонометрических функций и т.п.

Заключение

Стоит отметить, что, скорее всего, данная функция Фурье-фильтра, на практике окажется неработоспособна. При вызове данной функции даже с невысокой частотой 8000Гц, она не успеет выполнится к моменту следующего вызова, не хватить быстродействия. Данный программный код Фурье-фильтра приведен в качестве описания алгоритма, без привязки к конкретным аппаратным ресурсам, и имеет чисто образовательные цели (см. Введение).

При практической реализации следует распараллелить выполнение функции заполнения-опорожнения буфера BufInOut (лучше сразу ПДП и т. п.) и функции обработки буфера ObrBuf(), но это уже совсем другая история.

Теорема Фурье гласит, что любой сигнал можно разложить в ряд по ортонормированному набору периодических функций (например, по синусам и косинусам) с частотами кратными частоте периодического сигнала. Таким образом, в основе спектрального анализа сигнала лежит поиск весовых коэффициентов (в общем случае комплексных), модуль которых соответствует доли мощности колебаний соответствующей гармоники, вносимой в общую суперпозицию всех гармоник.

Быстрое преобразование Фурье

Быстрое преобразование Фурье - это алгоритм вычисления, который успешно использует свойства периодичности тригонометрических функций для того, чтобы избежать ненужных вычислений в дискретном преобразовании Фурье (ДПФ), за счёт чего быстрее осуществляется поиск коэффициентов в разложении Фурье. Основное отличие от дискретного преобразования заключается лишь в методе вычисления числовых значений (алгоритме), а не в самой обработке сигнала. И в случае БПФ, и в случае ДПФ результат вычислений один и тот же . Единственным требованием для алгоритма БПФ является размер выборки, кратный N = 2L, где L - любое положительное целое число. Наиболее распространёнными алгоритмами БПФ по основанию 2 являются: с прореживанием по времени и с прореживанием по частоте.

В данной работе реализован алгоритм БПФ по основанию 2 с прореживанием по времени (алгоритм Кули - Тьюки). Его легко получить, исследуя некоторые закономерности ДПФ. Введём так называемый поворотный коэффициент:

В этом случае в ДПФ коэффициенты Фурье для ряда значений сигнала {f0,f1,…,fN-1} выражаются соотношением:

Рассмотрим ряд сигнала из 4 значений: {f0,f1,f2,f3}. Представим преобразование Фурье в матричном виде (нормировочный коэффициент 1/N внесён в вектор-столбец Сij в правой части выражения):

Расписав поворотные коэффициенты по формуле Эйлера и определив их значения при k = 0, 1, 2,.. 9, можно построить диаграмму (Рис. 2), из которой видна закономерность повторяющихся коэффициентов.

Рисунок 2. Степенной ряд w для N=4

Подставляя численные значения в (4) получим:

То есть значения w, начиная с w4, равны соотвествующему значению от w0 до w3. Далее перепишем матричное уравнение (4) в нестандартном виде (подобные обозначения введены для наглядности дальнейших операций):

Поменяем местами столбцы матрицы, разделив её на две группы: по чётным f0, f2 и нечётным f1, f3 индексам:

Учтём, что wk+1 = wkw1, тогда выражение (6) перепишется в виде:

Используя соотношения:

Получаем искомые коэффициенты разложения в виде вектора-столбца со значениями ячеек:

Графическое изображение алгоритма (Рис. 3) похоже на бабочку с распахнутыми крыльями, поэтому этот метод вычисления называют «бабочкой».

Рисунок 3. Граф «Бабочка» для ряда из 4 членов

Итак, на первом шаге алгоритма идёт разбиение по чётным и нечётным индексам членов ряда значений сигнала. Затем выполняется граф «бабочка», он состоит из двух ступеней, их количество равно степени двойки объёма выборки (N = 4 = 22). На каждом ступени выполняется по две «бабочки» и их общее количество неизменно. Каждой операции «бабочка» соотвествует одна операция умножения. Для сравнения: в ДПФ с выборкой {f0,f1,f2,f3} операцию умножения необходимо было бы выполнить 4Ч4 = 16 раз, а в случае БПФ всего лишь 4 раза .

Теория

Для начала немного теории. Как известно все в подобных анализаторах используется быстрое преобразование Фурье и часто говорится, что ДПФ в подобных конструкция использовать нельзя, только БПФ да и то в на ассемблере. Я же использовал вместо этого дискретное преобразование Фурье(ДПФ) и преобразование по Уолшу. И в этой статье докажу, что можно использовать даже не только БПФ, а ДПФ написанный на С. Но сначала по порядку как из ДПФ получить простую функцию ДПФ и по Уолшу. ДПФ классически выглядит следующим образом:

Так как у мк мало ресурсов, то заменяют cos и sin на массивы размерностью N. Кроме того мк 8 разрядный и целесообразнее массивы хранить в виде 8 разрядных значений. Так как cos и sin меняется от -1 до 1, то лучше всего это диапазон увеличить в 127 раз, так как переменная 8 разрядная знаковая может хранить в себе значения от -127 до 127. Таким образом с учетом преобразований формулы будет:

где m меняется от 0 до N-1 с шагом равный k, когда m становится больше N, m уменьшают на N-1. Всего испльзуется 12 каналов, так что мк по силу ДПФ на такое маленькое количество каналов.

Например имеем 512 отсчетов АЦП нужно посчитать мнимую и действительную части для 150Гц при частоте дискретизации 19200 Гц:

Таким образом реальная и мнимая части получаются гораздо быстрее нежели традиционным способом, но в 127 раз больше. Для того, чтобы получить их реальный значения нужно поделить на 127, но у мк нет деления, поэму гораздо рациональнее будет не делить, а сдвинуть! Один сдвиг эквивалентен делению на 2. То есть если сдвинуть7 раз число то по сути поделили на 128! Так как потери в точности уже были неизбежны, то деление на 128 картины не изменит.

Дискретное преоразование Фурье для 150 Гц при частоте дискретизации 19200 Гц тогда выглядит следующим образом:

Для Уолша заменяем синусоиду и косинусоиду на меанды соответствующих периодов. То есть для sin от 0 до 180 градусов будет 1 а от >180 до 360 будет -1. Соответственно для синуса от 0 до 90 это 1, от 90 до 270 это -1 и от 270 до 360 это 1. Тем самым все вычисление мнимой и действительной части будут простым накапливанием сумм и разностей значения АЦП. То есть когда например синус равен 1, то значение АЦП прибавляется, а когда -1 отнимается. Недостаток такого решения заключается опять же в погрешности, которая неизбежно увеличивается и достигает 20%. Но так как в моей конструкции всего 8 значений то опять же существенно разницы мало кто заметит.

Пример реализации расчета мнимой и действительной части для 150 Гц при частоте дискретизации 19200 и 512 отсчетов:

Таким образом получаем довольно быстро мнимые и действительные части без процедур умножения.

И так получив мнимую и действительную части необходимо найти амплитуду спектра. Для этого необходимо найти корень из сумм квадратов мнимой и действительной части. Но если воспользоваться функцией из библиотеки math извлечение получится долгим и функция к тому же съест не хилый кусок от ПЗУ. Немного покопавшись в интернете я нашел элегантную функцию которую потом еще немного упростил в силу того, что она оперирует маленькими значениями. Вот это функция:

Сравнив эту функцию и функцию из библиотеки math пришел к выводу, что ее точности вполне хватает, чтобы результат был одинаков. Сама функция весит 2% против 12% от ПЗУ мк. Кроме того вычисляет гораздо быстрее.

Но как же получилось, что мк успевает расчитать 12 каналов да еще и в ДПФ. Кроме всех ухищрений со сдвигом вместо деления и быстрой функции квадрата есть еще одна уловка. Про которую я сейчас раскажу. Дело в том, что чем выше частота выделения тем уже полоса пропускания фильтра, так как переход cos и sin убыстряется и число периодов растет. А чем больше таких проходов cos и sin тем уже полоса пропускания. Например для частоты 150 Гц cos и sin повторяются 4 раза, а для 1,2 кГц cos и sin повторяются уже 32 раза. Отсюда видно, что для того чтобы на всех диапазонах полоса пропускания была равномерной и охватывал всех диапазон частот число отсчетов с ростом частоты фильтрации надо уменьшать. Например для 150 Гц бурутся все 512 отсчетов, для 600 Гц 256 отсчетов, а для 2,4 кГц 32 отсчета и так далее. Не трудно заменитить, что уменьшая число отсчетов с ростом частоты круто увеливается скорость ДПФ, так как умножений и сумм уже нужно делать гораздо меньше.

Практическая реализация

И так теоретическая часть подготовлена можно приступать к описанию конструкции. Вся конструкция состоит из одного микроконтроллера, 4-х транзисторов, нескольких конденсаторов и много резисторов. Резисторов лучше поставить много, хотя можно ограничиться только резисторами по горизонтали, т.е. по одному на каждый вывод порта. Схема классическая кроме единственного, что я использовал по 3 порта за 1 проход динамической развертки вместо 1 как везде делают. Это позволило уменьшить частоту развертки и уменьшить число транзистров до 4. Получилась фактически шкала на 24х4.

Анализатор спектра работает на частоте дискретизации 19,2 кГц от кварца на 16 МГц.

Анализатор спектра рассчитывает спектральные амплитуды следующих частот:

9,6 кГц, 4,8 кГц, 2,4 кГц,1,6 кГц, 1,2 кГц, 800 Гц, 600 Гц, 500 Гц, 400 Гц, 300 Гц, 150 Гц, 75 Гц. Программа проверялась и для 33 Гц и ДПФ успевал при тома что размерность cos и sin становится равный 512, но решил ограничится 75 Гц.

Здесь имеются частоты которые не кратны 2 в n-й степени, но тем не менее вычисляются. Например 400 Гц при делении на 19200 получаем 48 которое не кратно 2 в степени n. Выход из положение я выбрал взяв близкое число к числу 2 в степени n. Наиболее близкое это 240 оно близко к 256. То есть из 512 мы взяли только 240 отсчетов. Кроме того нельзя просто взять просто близкое. Например мы могли взять и 480 которое близко к 512, но тем не менее взяли близкое к 256. Объяснение этому в том, что на разных частотах число отсчетов влияет на полосу пропускания. Чем больше число отсчетов тем уже полоса пропускания. Связано это с тем что на высокой частоте косинус проходит гораздо быстрее период нежели на низкой и амплитуда вычисляется на столько точно, что соседние частоты просто выбрасываются и между частотами образуются слепые зоны частот которые анализатором не воспринимаются. Для того, чтобы анализатор воспринимал все частоты и охватывал весь спектр необходимо на высоких частотах расширить полосу взяв меньше отсчетов, а на низких как можно больше сузить взяв отсчетов соответственно больше. Таким образом на путем практического подбора числа отсчетов я подобрал такие:

9,6 кГц 16 отсчетов, 4,8 кГц 32 отсчета, 2,4 кГц 32 отсчета, 1,6 кГц 60 отсчетов, 1,2 кГц 64 отсчета, 800 Гц 240 отсчетов, 600 Гц 256 отсчетов, 500 Гц 252 отсчета, 400 Гц 240 отсчетов, 300 Гц 512 отсчетов, 150 Гц 512 отсчетов, 75 Гц 512 отсчетов.

Таким выбором числа отсчетов удалось полосу равномерной по всему диапазону частот.

Еще один подводный камень получился на частоте 9,6 кГц. Так как мнимой части нет(это легко проверить подставив в формулу выше при 512 отсчетах 256 номер спектра и синус будет всегда равен 0), то реальная часть может достаточно сильно изменяться за счет того, что значение косинуса будет вычисляться через раз в противофазе к основному сигналу. То есть будет вычисляться раз. Для того, чтобы этого не было необходимо вычислить хотя бы 2 значения реальной части сдвинутой на 90 градусов и выбрать максимальный из двух значений.

Алгоритм программы накопление 512 отсчетов в промежутке перевод мк в режим сна и пробуждение когда очередной отсчет готов. Кроме того 150 Гц происходит развертка светодиодов - это раз в 128 от частоты дискретизации в 19200. То есть до того как ацп снимет все отсчеты он успеет полностью провести одну полную развертку. Как только все отсчеты готовы в основном цикле программы происходит вычисление всех амплитуд спектра. В это время развертка продолжается, но мк не впадает в сон, а считает амплитуды. Как только амплитуды посчитаны мк переводится в сон и программа повторяется заново. Амплитуды рассчитываются исходя из 20 дб диапазона, то есть прологарифмированы.

Исходя из времени на получение всех отсчетов и время на расчет всех амплитуд частота обновления находится в районе 10-15 Гц.

Все сигналы, независимо от того, вы их придумали или наблюдали во Вселенной, на самом деле просто сумма простых синусоид различных частот.

Я сделал небольшой аудио анализатор спектра (0 - 10 кГц) из ЖК-дисплея 16x2 и микроконтроллера ATmega32. Я начал с простых ДПФ (Дискретное Преобразование Фурье). БПФ (Быстрое Преобразование Фурье) отличается от ДПФ только большей скоростью и немного более сложным алгоритмом, я не стал его использовать, возможно я добавлю его позже.

ДПФ медленный по сравнению с БПФ. Мой ЖК анализатор спектра не требует большой скорости, которую может обеспечить БПФ, и если изображение на экране будет меняться с частотой около 30 кадров / сек, то это более чем достаточно для визуализации звукового спектра. Но я итак могу достичь частоты около 100 кадров / сек, однако для ЖК-дисплея не рекомендуется слишком высокая частота обновления. Звук с частотой дискретизации 20 кГц даёт 32 точки ДПФ. Поскольку результат преобразования симметричен, мне нужно использовать только первые 16 результатов. Соответственно максимальная частота 10 кГц. Таким образом, 10кГц/16 = 625Гц.

Я пытался увеличить скорость вычисления ДПФ. Если есть точка N ДПФ, то необходимо найти синус и косинус (N ^ 2) / 2. Для 32-точечного ДПФ, необходимо найти синус и косинус 512. Прежде чем искать синус и косинус, нам нужно найти угол (градусы), который занимает некоторое время процессора. Для этого я сделал таблицы для синуса и косинуса. Я сделал синус и косинус 16-битными переменными, умножив значения синуса и косинуса на 10000. После преобразования я должен разделить каждый результат на 10000. Теперь я могу рассчитать 120 32-точечных ДПФ в секунду, что более чем достаточно для анализатора спектра.

Дисплей

Я использовал пользовательские символы для ЖК-дисплея загруженные в 64 Байт встроенной памяти ЖК-дисплея. В интернете я увидел видео, где ЖК-дисплей 16х2 используется в качестве дисплея анализатора спектра и использовал эту идею.

Аудио вход

Одной из наиболее важных частей анализатора спектра является получение сигнала с электретного микрофона. Особое внимание должно быть уделено разработке предварительного усилителя для микрофона. Нам нужно установить нулевой уровень на входе АЦП и максимальный уровень равный половине напряжения питания, т.е. 2,5В. На него может подаваться напряжение от -2,5В до +2,5В. Предусилитель должен быть настроен так, чтобы не превышать этих границ. Я использовал операционный усилитель LM324 в качестве предварительного усилителя для микрофона.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Дисплей
МК AVR 8-бит

ATmega32

1 В блокнот
Конденсатор 22 пФ 2 В блокнот
Конденсатор 0.1 мкФ 1 В блокнот
Электролитический конденсатор 100 мкФ 1 В блокнот
Резистор

100 Ом

1 В блокнот
Подстроечный резистор 4.7 кОм 1 В блокнот
Кварцевый резонатор 16 МГц 1 В блокнот
LCD-дисплей 16х2 1 В блокнот
Блок питания 5 В 1 В блокнот
Аудио вход
U1 Операционный усилитель

LM324

1 В блокнот
С1 Конденсатор 1 мкФ 1 В блокнот
С8 Конденсатор 0.01 мкФ 1 В блокнот
R1 Резистор

220 кОм

1 В блокнот
R2, R3 Резистор

10 кОм

2 В блокнот
R4, R9 Резистор

1 кОм

2 В блокнот
R5 Резистор

В статье описан небольшой анализатор аудиоспектра (0 - 10 кГц), состоящий из ЖК-дисплея 16x2 и микроконтроллера ATmega32. Используется простой алгоритм ДПФ (Дискретное Преобразование Фурье). БПФ (Быстрое Преобразование Фурье) отличается от ДПФ только большей скоростью но и более сложным алгоритмом.

ДПФ медленный по сравнению с БПФ. Данный ЖК анализатор спектра не требует большой скорости, которую может обеспечить БПФ, и если изображение на экране будет меняться с частотой около 30 кадров / сек, то это более чем достаточно для визуализации звукового спектра. Для ЖК-дисплея не рекомендуется слишком высокая частота обновления. Звук с частотой дискретизации 20 кГц даёт 32 точки ДПФ. Поскольку результат преобразования симметричен, мне нужно использовать только первые 16 результатов. Соответственно максимальная частота 10 кГц. Таким образом, 10кГц/16 = 625Гц.

Можно увеличить скорость вычисления ДПФ. Если есть точка N ДПФ, то необходимо найти синус и косинус (N ^ 2) / 2. Для 32-точечного ДПФ, необходимо найти синус и косинус 512. Прежде чем искать синус и косинус, нам нужно найти угол (градусы), который занимает некоторое время процессора. Для ускорения этого сделаны таблицы для синуса и косинуса. Синус и косинус сделаны 16-битными переменными, умножив значения синуса и косинуса на 10000. После преобразования нужно разделить каждый результат на 10000. Теперь можно рассчитать 120 32-точечных ДПФ в секунду, что более чем достаточно для анализатора спектра.

Дисплей

Для отображения столбиков использованы пользовательские символы для ЖК-дисплея, загруженные в 64 Байт встроенной памяти дисплея.

Аудио вход

Одной из наиболее важных частей анализатора спектра является получение сигнала с электретного микрофона. Особое внимание должно быть уделено разработке предварительного усилителя для микрофона. Нам нужно установить нулевой уровень на входе АЦП и максимальный уровень равный половине напряжения питания, т.е. 2,5В. На него может подаваться напряжение от -2,5В до +2,5В. Предусилитель должен быть настроен так, чтобы не превышать этих границ. В схеме использован операционный усилитель LM324 в качестве предварительного усилителя для микрофона.