Переходная и импульсная характеристики цепи. Переходная и импульсная характеристики линейных цепей. Временной метод анализа переходных процессов в линейных электрических цепях

Рассмотрим линейную электрическую цепь, не содержащую независимых ис точников тока и напряжения. Пусть внешнее воздействие на цепь представляет со

Переходной характеристикой g (t -t 0 ) линейной цепи, не содержащей незави симых источников энергии, называется отношение реакции этой цепи на воздейст вие неединичного скачка тока или напряжения к высоте этого скачка при нулевых начальных условиях:

реходная характеристика цепи численно равна реакции цепи на воздействие единич­ ного скачка тока или напряжения. Размерность переходной характеристики равна отношению размерности отклика к размерности внешнего воздействия, поэтому переходная характеристика может иметь размерность сопротивления, проводимо сти или быть безразмерной величиной.

Пусть внешнее воздействие на цепь имеет форму бесконечно короткого им пульса бесконечно большой высоты и конечной площади А И :

и .

Реакцию цепи на это воздействие при нулевых начальных условиях обозначим

Импульсной характеристикой h (t -t 0 ) линейной цепи, не содержащей неза висимых источников энергии, называется отношение реакции этой цепи на воздей ствие бесконечно короткого импульса бесконечно большой высоты и конечной площади к площади этого импульса при нулевых начальных условиях:

⁄ и .

Как следует из выражения (6.109), импульсная характеристика цепи численно равна реакции цепи на воздействие единичного импульса (А И = 1). Размерность им пульсной характеристики равна отношению размерности отклика цепи к произве дению размерности внешнего воздействия на время.

Подобно комплексной частотной и операторной характеристикам цепи, пере ходная и импульсная характеристики устанавливают связь между внешним воздей ствием на цепь и ее реакцией, однако в отличие от комплексной частотной и опера торной характеристик аргументом переходной и импульсной характеристик явля ется время t , а не угловая ω или комплексная р частота. Так как характеристики це пи, аргументом которых является время, называются временны́ми, а аргументом которых является частота (в том числе и комплексная) - частотными характери

стиками (см. модуль 1.5), то переходная и импульсная характеристики относятся к временны́м характеристикам цепи.

Каждой паре « внешнее воздействие на цепь - реакция цепи » можно поставить в соответствие определенную комплексную частотную

Для установления связи между этими характеристиками найдем операторные изображения переходной и импульсной характеристик. Используя выражения

(6.108), (6.109), запишем

Операторные изображения реакции цепи на внеш

ние воздействия. Выражая

через операторные изображения внешних

воздействий

Аи

; получаем

0 операторные изображения переходной и импульсной характери

стик имеют особенно простой вид:

Таким образом, импульсная характеристика цепи

Это функция, изо

бражение которой по Лапласу, представляет собой операторную характеристику це

между частотными и временными характеристиками цепи. Зная, например, им пульсную характеристику можно с помощью прямого преобразования Лапла са найти соответствующую операторную характеристику цепи

Используя выражения (6.110) и теорему дифференцирования (6.51), нетрудно установить связь между переходной и импульсной характеристиками:

Следовательно, импульсная характеристика цепи равна первой производной переходной характеристики по времени. В связи с тем, что переходная характери стика цепи g (t-t 0 ) численно равна реакции цепи на воздействие единичного скачка напряжения или тока, приложенного к цепи с нулевыми начальными условиями, значения функции g (t-t 0 ) при t < t 0 равны нулю. Поэтому, строго говоря, переход ную характеристику цепи следует записывать как g (t-t 0 ) ∙ 1(t-t 0 ), а не g (t-t 0 ). За меняя в выражении (6.112) g (t-t 0 ) на g (t-t 0 ) ∙ 1(t-t 0 ) и используя соотношение (6.104), получаем

Выражение (6.113) известно под названием формулы обобщенной производ­ ной . Первое слагаемое в этом выражении представляет собой производную пере ходной характеристики при t > t 0 , а второе слагаемое содержит произведение δ функции на значение переходной характеристики в точке t = t 0 . Если при t = t 0 функ ция g (t-t 0 ) изменяется скачкообразно, то импульсная характеристика цепи содер жит δ функцию, умноженную на высоту скачка переходной характеристики в точке t = t 0 . Если функция g (t-t 0 ) не претерпевает разрыва при t = t 0 , т. е. значение переход ной характеристики в точке t = t 0 равно нулю, то выражение для обобщенной произ водной совпадает с выражением для обычной производной.

Методы определения временных характеристик

Для определения временны́х характеристик линейной цепи в общем случае не обходимо рассмотреть переходные процессы, имеющие место в данной цепи при воздействии на нее единичного скачка (единичного импульса) тока или напряже ния. Это может быть выполнено с помощью классического или операторного метода анализа переходных процессов. На практике для нахождения временных характери стик линейных цепей удобно использовать другой путь, основанный на применении соотношений, устанавливающих связь между частотными и временными характери стиками. Определение временных характеристик в этом случае начинается с состав

операторную характеристику цепи и применяя соотношения (6.110) или (6.111), оп ределяют искомые временные характеристики.

щающего цепи определенную энергию. Токи индуктивностей и напряжения емко стей при этом скачком изменяются на значение, соответствующее поступившей в цепь энергии. На втором этапе (при) действие приложенного к цепи внешне го воздействия закончилось (при этом соответствующие источники энергии вы ключены, т. е. представлены внутренними сопротивлениями), и в цепи возникают свободные процессы, протекающие за счет энергии, запасенной в реактивных эле ментах на первой стадии переходного процесса. Таким образом, импульсная харак теристика цепи, численно равная реакции на воздействие единичного импульса то ка или напряжения, характеризует свободные процессы в рассматриваемой цепи.

Пример6.7.Для цепи, схема которой приведена на рис. 3.12, а, найдем переходную и импульсную характеристики в режиме холостого хода на зажимах 2―2". Внешнее воздейст

вие на цепь ― напряжение на зажимах 1―1"

Реакция цепи ― напряжение на зажи

Операторная характеристика данной цепи, соответствующая заданной паре «внеш нее воздействие на цепь ― реакция цепи», была получена в примере 6.5:

х ⁄ .

Следовательно, операторные изображения переходной и импульсной характери стик цепи имеют вид

⁄ ;

1 ⁄ 1 ⁄ .

Используя таблицы обратного преобразования Лапласа см. приложение 1 , пере ходим от изображений искомых временных характеристик к оригиналам рис. 6.20, а, б:

Отметим, что выражение для импульсной характеристики цепи может быть полу чено и с помощью формулы 6.113 , примененной к выражению для переходной характери стики цепи g t .

Для качественного объяснения вида переходной и импульсной характеристик цепи в данном включении рис. 6.20, а, б подсоединим к зажимам 1-1" независимый источник напряжения рис. 6.20, в. Переходная характеристика данной цепи численно рав на напряжению на зажимах 2-2" при воздействии на цепь единичного скачка напряжения

1 В и нулевых начальных условиях. В начальный момент времени после коммута

ции сопротивление индуктивности бесконечно велико, поэтому при t

на выходе цепи равно напряжению на зажимах 1-1": u 2 |t 0

u 1| t 0

1 В. С течением вре

мени напряжение на индуктивности уменьшается, стремясь к нулю при t

∞ . В соответст

вии с этим переходная характеристика начинается от значения g 0

1 и стремится к нулю

Импульсная характеристика цепи численно равна напряжению на зажимах 2 - 2"

при приложении к входу цепи единичного импульса напряжения e t

  • 5. Вторичные (характеристические) параметры четырехполюсников согласованный режим четырехполюсника.
  • 6. Несинусоидальные токи. Разложение в ряд Фурье. Частотный спектр несинусоидальной функции напряжения или тока.
  • 7. Максимальное, среднее и действующее значения несинусоидального тока.
  • 8. Резонанс в цепи несинусоидального тока.
  • 9. Мощность цепи несинусоидального тока.
  • 10. Высшие гармоники в трехфазных цепях. Простейший утроитель частоты.
  • 11. Возникновение переходных процессов в линейных цепях. Законы коммутации.
  • 12. Классический метод расчета переходных процессов. Формирование расчетного уравнения, степень расчетного уравнения. Граничные условия.
  • Классический метод расчёта переходных процессов
  • 13. Свободный и принужденный режимы. Постоянная времени цепи, определение длительности переходного процесса.
  • 14. Периодический заряд конденсатора. Собственная частота колебаний контура. Критическое сопротивление.
  • 15. "Некорректные" начальные условия. Особенности расчета. Существуют ли в реальных схемах такие условия?
  • 16. 0Пределение корней характеристического уравнения. Обосновать.
  • 17.Включение пассивного двухполюсника под действие кусочно-непрерывного напряжения. Формула Дюамеля.
  • Последовательность расчета с использованием интеграла Дюамеля
  • Переходная и импульсная характеристики
  • 19. Применение преобразований Лапласа к расчету переходных процессов. Основные свойства Лапласовых функций.
  • 20.Операторные схемы замещения. Обосновать.
  • 21.Расчет переходных процессов методом переменных состояния. Формирование расчетных уравнений. Расчет с помощью эвм.
  • 22.Преобразование Фурье и его основные свойства. Частотные спектры импульсных сигналов, отличия от частотных спектров периодических несинусоидальных сигналов.
  • 23.Расчет частотных характеристик цепи. Определение переходной характеристики по вещественной частотной.
  • 24. Особенности применения частотного метода расчета при изучении прохождения сигнала через четырехполюсник.
  • 25.Уравнения длинной линии в частных производных. Первичные параметры длинной линии.
  • 26. Решение уравнений длинной линии при синусоидальном напряжении. Вторичные параметры длинной линии.
  • 27. Волновые процессы в длинной линии. Падающая и отраженная волны. Коэффициент отражения. Входное сопротивление.
  • Дифференциальные уравнения длинной линии
  • Погонные параметры
  • Коэффициенты бегущей и стоячей волны
  • 28.Линия без потерь. Стоячие волны.
  • 29. Входные сопротивления линии без потерь. Имитация индуктивностей и емкостей.
  • 31. Волновые процессы в линии без потерь, нагруженной на активное сопротивление. Коэффициенты стоячей и бегущей волны.
  • 32. Особенности вольт-амперных характеристик нелинейных элементов. Линейные схемы замещения по статическим и дифференциальным параметрам.
  • 33. Расчет схем стабилизации напряжений и токов, определение коэффициента стабилизации по линейной схеме замещения.
  • 34. Аппроксимация нелинейных характеристик. Аналитический метод расчета.
  • 35. Особенности периодических процессов в электрических цепях с инерционными элементами.
  • 36. Спектральный состав тока в цепи с нелинейным резистором при воздействии синусоидального напряжения. Комбинационные колебания.
  • 37. Метод эквивалентных синусоид. Методы расчета нелинейных цепей по действующим значениям. Метод эквивалентной синусоиды.
  • Метод расчета нелинейных цепей переменного тока по эквивалентным действующим значениям
  • 38. Форма кривых тока, магнитного потока и напряжения в нелинейной идеальной катушке. Схема замещения, векторная диаграмма.
  • Расчет тока катушки со сталью с учетом потерь в сердечнике
  • 40. Феррорезонанс напряжений. Триггерный эффект.
  • 42. Основы метода гармонического баланса. Приведите пример.
  • 43. Метод кусочно-линейной аппроксимации характеристик нелинейных элементов. Расчет цепей с вентилями. Схема однополупериодного и двухполупериодного выпрямителя.
  • Цепи с вентильными сопротивлениями
  • 44. Расчет схемы однополупериодного выпрямителя с емкостью.
  • 18. Реакция линейных цепей на единичные функции. Переходная и импульсная характеристики цепи, их связь.

    Единичная ступенчатая функция (функция включения) 1 (t) определяется следующим образом:

    График функции 1 (t) показан на рис. 2.1.

    Функция 1 (t) равна нулю при всех отрицательных значениях аргумента и единице при t ³ 0 . Введем в рассмотрение также смещенную единичную ступенчатую функцию

    Такое воздействие включается в момент времени t = t ..

    Напряжение в виде единичной ступенчатой функции на входе цепи будет при подключении источника постоянного напряжения U 0 =1 В при t = 0 с помощью идеального ключа (рис. 2.3).

    Единичная импульсная функция (d - функция, функция Дирака) определяется как производная от единичной ступенчатой функции. Поскольку в момент времени t = 0 функция 1 (t ) претерпевает разрыв, то ее производная не существует (обращается в бесконечность). Таким образом, единичная импульсная функция

    Это особая функция или математическая абстракция, но ее широко используют при анализе электрических и других физических объектов. Подобного рода функции рассматриваются в математической теории обобщенных функций.

    Воздействие в виде единичной импульсной функции можно рассматривать как ударное воздействие (достаточно большая амплитуда и бесконечно малое время воздействия). Вводится также единичная импульсная функция, смещенная на время t = t

    Единичную импульсную функцию принято графически изображать в виде вертикальной стрелки при t = 0, а смещенную при - t = t (рис. 2.4).

    Если взять интеграл от единичной импульсной функции, т.е. определить площадь, ограниченную ею, то получим следующий результат:

    Рис. 2.4.

    Очевидно, что интервал интегрирования может быть любым, лишь бы туда попала точка t = 0. Интеграл от смещенной единичной импульсной функции d (t-t ) также равен 1 (если в пределы интегрирования попадает точка t = t). Если взять интеграл от единичной импульсной функции умноженной на некоторый коэффициент А 0 , то очевидно результат интегрирования будет равен этому коэффициенту. Следовательно, коэффициент А 0 перед d (t ) определяет площадь, ограниченную функцией А 0 d (t ).

    Для физической интерпретации d - функции целесообразно ее рассматривать как предел, к которому стремиться некоторая последовательность обычных функции, например

    Переходная и импульсная характеристики

    Переходной характеристикой h(t) называется реакция цепи на воздействие в виде единичной ступенчатой функции 1 (t ). Импульсной характеристикой g(t) называется реакция цепи на воздействие в виде единичной импульсной функции d (t ). Обе характеристики определяются при нулевых начальных условиях.

    Переходная и импульсная функции характеризуют цепь в переходном режиме, так как они являются реакциями на скачкообразные, т.е. довольно тяжелые для любой системы воздействия. Кроме того, как будет показано ниже с помощью переходной и импульсной характеристик может быть определена реакция цепи на произвольное воздействие. Переходная и импульсная характеристики связаны между собой также как связаны между собой соответствующие воздействия. Единичная импульсная функция является производной от единичной ступенчатой функции (см. (2.2)), поэтому импульсная характеристика является производной от переходной характеристики и при h (0) = 0 . (2.3)

    Это утверждение следует из общих свойств линейных систем, которые описываются линейными дифференциальными уравнениями, в частности, если к линейной цепи с нулевыми начальными условиями вместо воздействия прикладывается его производная, то реакция будет равна производной от исходной реакции.

    Из двух рассматриваемых характеристик наиболее просто определяется переходная, так как она может быть вычислена по реакции цепи на включение на входе источника постоянного напряжения или тока. Если такая реакция известна, то для получения h(t) достаточно разделить ее на амплитуду входного постоянного воздействия. Отсюда следует, что переходная (также как и импульсная) характеристика может иметь размерность сопротивления, проводимости или быть безразмерной величиной в зависимости от размерности воздействия и реакции.

    Пример . Определить переходную h(t) и импульсную g (t ) характеристики последовательной RC-цепи.

    Воздействием является входное напряжение u 1 (t ), а реакцией - напряжение на емкости u 2 (t ). Согласно определению переходной характеристики ее следует определять как напряжение на выходе, когда на вход цепи подключается источник постоянного напряжения U 0

    Такая задача была решена в разделе 1.6, где получено u 2 (t ) = u C (t ) = Таким образом,h(t) = u 2 (t ) / U 0 = Импульсную характеристику определим по (2.3).

    Чтобы судить о возможностях электротехнических устройств, принимающих и передающих входные воздействия, прибегают к исследованию их переходных и импульсных характеристик.

    Переходная характеристика h (t ) линейной цепи, не содержащей независимых источников, численно равна реакции цепи на воздействие единичного скачка тока или напряжения в виде единичной ступенчатой функции 1(t ) или 1(t t 0) при нулевых начальных условиях (рис. 14). Размерность переходной характеристики равна отношению размерности реакции к размерности воздействия. Она может быть безразмерной, иметь размерность Ом, Сименс (См).

    Рис. 14

    Импульсная характеристика k (t ) линейной цепи, не содержащей независимых источников, численно равна реакции цепи на воздействие единичного импульса в виде d(t ) или d(t t 0) функции при нулевых начальных условиях. Ее размерность равна отношению размерности реакции к произведению размерности воздействия на время, поэтому она может иметь размерности с –1 , Омс –1 , Смс –1 .

    Импульсную функцию d(t ) можно рассматривать как производную единичной ступенчатой функции d(t ) = d 1(t )/dt . Соответственно, импульсная характеристика всегда является производной по времени от переходной характеристики: k (t ) = h (0 +)d(t ) + dh (t )/dt . Эту связь используют для определения импульсной характеристики. Например, если для некоторой цепи h (t ) = 0,7e –100t , то k (t ) = 0,7d(t ) – 70e –100 t . Переходную характеристику можно определить классическим или операторным методом расчета переходных процессов.

    Между временными и частотными характеристиками цепи существует связь. Зная операторную передаточную функцию, можно найти изображение реакции цепи: Y (s ) = W (s )X (s ), т.е. передаточная функция содержит полную информацию о свойствах цепи как системы передачи сигналов от ее входа к выходу при нулевых начальных условиях. При этом характер воздействия и реакции соответствуют тем, для которых определена передаточная функция.

    Передаточная функция для линейных цепей не зависит от вида входного воздействия, поэтому она может быть получена из переходной характеристики. Так, при действии на входе единичной ступенчатой функции 1(t ) передаточная функция с учетом того, что 1(t ) = 1/s , равна

    W (s ) = L [h (t )] / L = L [h (t )] / (1/s ), где L [f (t )] - обозначение прямого преобразования Лапласа над функцией f (t ). Переходная характеристика может быть определена через передаточную функцию с помощью обратного преобразования Лапласа, т.е. h (t ) = L –1 [W (s )(1/s )], где L –1 [F (s )] - обозначение обратного преобразования Лапласа над функцией F (s ). Таким образом, переходная характеристика h (t ) представляет собой функцию, изображение которой равно W (s ) /s .

    При действии на вход цепи единичной импульсной функции d(t ) передаточная функция W (s ) = L [k (t )] / L = L [k (t )] / 1 = L [k (t )]. Таким образом, импульсная характеристика цепи k (t ) является оригиналом передаточной функции. По известной операторной функции цепи с помощью обратного преобразования Лапласа можно определить импульсную характеристику: k (t ) W (s ). Это означает, что импульсная характеристика цепи единственным образом определяет частотные характеристики цепи и наоборот, так как

    W (j w) = W (s ) s = j w . Поскольку по известной импульсной характеристике можно найти переходную характеристику цепи (и наоборот), то последняя тоже однозначно определяется частотными характеристиками цепи.

    Пример 8. Рассчитать переходную и импульсную характеристики цепи (рис. 15) для входного тока и выходного напряжения при заданных параметрах элементов: R = 50 Ом, L 1 = L 2 = L = 125 мГн,
    С = 80 мкФ.

    Рис. 15

    Решение. Примéним классический метод расчета. Характеристическое уравнение Z вх = R + pL +
    + 1 / (pC ) = 0 при заданных параметрах элементов имеет комплексно-сопряженные корни: p 1,2 =
    = – d j w A 2 = – 100 j 200, что определяет колебательный характер переходного процесса. В этом случае законы изменения токов и напряжений и их производных в общем виде записывают так:

    y (t ) = (M сosw A 2 t + N sinw A 2 t )e – d t + y вын; dy (t ) / dt =

    =[(–M d + N w A 2) сos w A 2 t – (M w A 2 + N d)sinw A 2 t ]e – d t + dy вын / dt , где w A 2 - частота свободных колебаний; y вын - вынужденная составляющая переходного процесса.

    Вначале найдем решение для u C (t ) и i C (t ) = C du C (t ) / dt , воспользовавшись вышеприведенными уравнениями, а затем по уравнениям Кирхгофа определим необходимые напряжения, токи и, соответственно, переходные и импульсные характеристики.

    Для определения постоянных интегрирования необходимы начальные и вынужденные значения указанных функций. Их начальные значения известны: u C (0 +) = 0 (из определения h (t ) и k (t )), так как i C (t ) = i L (t ) = i (t ), то i C (0 +) = i L (0 +) = 0. Вынужденные значения определим из уравнения, составленного согласно второму закону Кирхгофа для t 0 + : u 1 = R i (t ) + (L 1 + L 2) i (t ) / dt + u C (t ), u 1 = 1(t ) = 1 = сonst,

    отсюда u C () = u C вын = 1, i C () = i C вын = i () = 0.

    Составим уравнения для определения постоянных интегрирования M , N :

    u C (0 +) = M + u C вын (0 +), i C (0 +) = С (–M d + N w A 2) + i C вын (0 +); или: 0 = M + 1; 0 = –M 100 + N 200; отсюда: M = –1, N = –0,5. Полученные значения позволяют записать решения u C (t ) и i C (t ) = i (t ): u C (t ) = [–сos200t – -0,5sin200t )e –100t + 1] B, i C (t ) = i (t ) = e –100 t ] = 0,02
    sin200t )e –100 t A. Согласно второму закону Кирхгофа,

    u 2 (t ) = u C (t ) + u L 2 (t ), u L 2 (t ) = u L (t ) = Ldi (t ) / dt = (0,5сos200t – 0,25sin200t ) e –100t B. Тогда u 2 (t ) =

    =(–0,5сos200t – 0,75sin200t ) e –100t + 1 = [–0,901sin(200t + 33,69) e –100t + 1] B.

    Проверим правильность полученного результата по начальному значению: с одной стороны, u 2 (0 +) = –0,901 sin (33,69) + 1 = 0,5, а с другой стороны, u 2 (0 +) = u С (0 +) + u L (0 +) = 0 + 0,5 - значения совпадают.

    3. Импульсные характеристики электрических цепей

    Импульсной характеристикой цепи называют отношение реакции цепи на импульсное воздействие к площади этого воздействия при нулевых начальных условиях.

    По определению ,

    где – реакция цепи на импульсное воздействие;

    – площадь импульса воздействия.

    По известной импульсной характеристике цепи можно найти реакцию цепи на заданное воздействие: .

    В качестве функции воздействия часто используется единичное импульсное воздействие называемое также дельта-функцией или функцией Дирака.

    Дельта-функция – это функция всюду равная нулю, кроме , а площадь ее равна единице ():

    .

    К понятию дельта-функция можно прийти, рассматривая предел прямоугольного импульса высотой и длительностью , когда (рис. 3):

    Установим связь между передаточной функцией цепи и ее импульсной характеристикой, для чего используем операторный метод.

    По определению:

    Если воздействие (оригинал) рассматривать для наиболее общего случая в виде произведения площади импульса на дельта-функцию, т. е. в виде , то изображение этого воздействия согласно таблицы соответствий имеет вид:

    .

    Тогда с другой стороны, отношение преобразованной по Лапласу реакции цепи к величине площади импульса воздействия, представляет собой операторную импульсную характеристику цепи:

    .

    Следовательно, .

    Для нахождения импульсной характеристики цепи необходимо применить обратное преобразование Лапласа:

    , т. е. фактически .

    Обобщая формулы, получим связь между операторной передаточной функцией цепи и операторными переходной и импульсной характеристиками цепи:

    Таким образом, зная одну из характеристик цепи, можно определить любые другие.

    Произведем тождественное преобразование равенства, прибавив к средней части .

    Тогда будем иметь .

    Поскольку представляет собой изображение производной переходной характеристики, то исходное равенство можно переписать в виде:

    Переходя в область оригиналов, получаем формулу, позволяющую определить импульсную характеристику цепи по известной ее переходной характеристике:

    Если , то .

    Обратное соотношение между указанными характеристиками имеет вид:

    .

    По передаточной функции легко установить наличие в составе функции слагаемого .

    Если степени числителя и знаменателя одинаковы, то рассматриваемое слагаемое будет присутствовать. Если же функция является правильной дробью, то этого слагаемого не будет.

    Пример: определить импульсные характеристики для напряжений и в последовательной -цепи, показанной на рисунке 4.

    Определим :

    По таблице соответствий перейдем к оригиналу:

    .

    График этой функции показан на рисунке 5.

    Рис. 5

    Передаточная функция :

    Согласно таблице соответствий имеем:

    .

    График полученной функции показан на рисунке 6.

    Укажем, что такие же выражения можно было получить с помощью соотношений, устанавливающих связь между и.

    Импульсная характеристика по физическому смыслу отражает собой процесс свободных колебаний и по этой причине можно утверждать, что в реальных цепях всегда должно выполняться условие:

    4. Интегралы свертки (наложения)

    Рассмотрим порядок определения реакции линейной электрической цепи на сложное воздействие, если известна импульсная характеристика этой цепи . Будем считать, что воздействие представляет собой кусочно-непрерывную функцию , показанную на рисунке 7.

    Пусть требуется найти значение реакции в некоторый момент времени . Решая эту задачу, представим воздействие в виде суммы прямоугольных импульсов бесконечно малой длительности, один из которых, соответствующий моменту времени , показан на рисунке 7. Этот импульс характеризуется длительностью и высотой .

    Из ранее рассмотренного материала известно, что реакцию цепи на короткий импульс можно считать равной произведению импульсной характеристики цепи на площадь импульсного воздействия. Следовательно, бесконечно малая составляющая реакции, обусловленная этим импульсным воздействием, в момент времени будет равной:

    поскольку площадь импульса равна , а от момента его приложения до момента наблюдения проходит время .

    Используя принцип наложения, полную реакцию цепи можно определить как сумму бесконечно большого числа бесконечно малых составляющих , вызванных последовательностью бесконечно малых по площади импульсных воздействий, предшествующих моменту времени .

    Таким образом:

    .

    Эта формула верна для любых значений , поэтому обычно переменную обозначают просто . Тогда:

    .

    Полученное соотношение называют интегралом свертки или интегралом наложения. Функцию, которая находится в результате вычисления интеграла свертки, называют сверткой и .

    Можно найти другую форму интеграла свертки, если в полученном выражении для осуществить замену переменных:

    .

    Пример: найти напряжение на емкости последовательной -цепи (рис. 8), если на входе действует экспоненциальный импульс вида:

    цепи связан: с изменением энергетического состояния... (+0),. Uc(-0) = Uc(+0). 3. Переходная характеристика электрической цепи это: Отклик на единичное ступенчатое...

  • Исследование цепи второго порядка. Поиск входной и предаточной характеристики

    Курсовая работа >> Коммуникации и связь

    3. Переходная и импульсная характеристики цепи Лаплас образ переходной характеристики имеет вид. Для получения переходной характеристики во... А., Золотницкий В. М., Чернышев Э. П. Основы теории электрических цепей .-СПб.:Лань, 2004. 2. Дьяконов В. П. MATLAB ...

  • Основные положения теории переходных процессов

    Реферат >> Физика

    Лапласа; – временной, использующий переходные и импульсные характеристики ; – частотный, базирующийся на... классического метода анализа переходных колебаний в электрических цепях Переходные процессы в электрических цепях описываются уравнениями, ...

  • Импульс является функцией без какой-либо поддержки времени. С дифференциальными уравнениями используется для получения естественного отклика системы. Естественным ее ответом является реакция на начальное состояние. Форсированный отклик системы - это ответ на вход, пренебрегая ее первичным формированием.

    Поскольку импульсная функция не имеет какой-либо поддержки времени, можно описать любое начальное состояние, возникающее из соответствующей взвешенной величины, которая равна массе тела, произведенной на скорость. Любая произвольная входная переменная может быть описана как сумма взвешенных импульсов. В результате, для линейной системы описывается как сумма «естественных» ответов на состояния, представленные рассматриваемыми величинами. Это то, что объясняет интеграл.

    Когда вычисляется импульсная характеристика системы, по существу, производится естественный отклик. Если исследуется сумма или интеграл свертки, в основном решается этот вход в ряд состояний, а затем изначально сформированный ответ на эти состояния. Практически для импульсной функции можно привести пример удара в боксе, который длится очень мало, и после этого не будет следующего. Математически он присутствует только в начальной точке реалистической системы, имеющей высокую (бесконечную) амплитуду в этом пункте, а затем постоянно гаснет.

    Импульсная функция определяется следующим образом: F(X)=∞∞ x=0=00, где ответ представляет собой характеристику системы. Рассматриваемая функция на самом деле является областью прямоугольного импульса при x=0, ширина которого считается равной нулю. При x=0 высоты h и его ширины 1/h это фактическое начало. Теперь, если ширина становится незначительной, то есть почти стремится к нулю, это делает соответствующую высоту h величины, стремящейся к бесконечности. Это определяет функцию как бесконечно высокую.

    Ответ конструкции

    Импульсная характеристика следующая: всякий раз, когда системе (блоку) или процессору присваивается входной сигнал, он изменяет или обрабатывает его, чтобы дать желаемое выходное предупреждение в зависимости от функции передачи. Отклик системы помогает определить основные положения, конструкцию и реакцию для любого звука. Дельта-функция является обобщенной, которая может быть определена как предел класса указанных последовательностей. Если принимать импульсного сигнала, то разумеется, что оно является спектром постоянного тока в частотной области. Это означает, что все гармоники (в диапазоне от частоты до +бесконечности) способствуют рассматриваемому сигналу. Спектр частотной характеристики указывает, что эта система обеспечивает такой порядок усиления или ослабления этой частоты или подавляет эти колеблющиеся составляющие. Фазовый говорит о сдвиге, предоставляемом для разных гармоник частоты.

    Таким образом, импульсные характеристики сигнала указывают на то, что он содержит в себе весь диапазон частот, поэтому используется для тестирования системы. Потому что, если применять какой-либо другой метод оповещения, то у него не будет всех необходимых сконструированных деталей, следовательно, реакция останется неизвестной.

    Реакция устройств на внешние факторы

    При обработке оповещения импульсная характеристика представляет собой ее выход, когда он представлен кратким входным сигналом, называемым импульсом. В более общем плане является реакцией любой динамической системы в ответ на некоторые внешние изменения. В обоих случаях импульсная характеристика описывает функцию времени (или, возможно, как некоторой другой независимой переменной, которая параметризирует динамическое поведение). Она имеет бесконечную амплитуду только при t=0 и нулевую всюду, и, как следует из названия, ее импульс i, e действует в течение короткого промежутка.

    При применении любая система имеет функцию передачи от входа к выходу, которая описывает ее как фильтр, влияющий на фазу и указанную выше величину в частотном диапазоне. Эта частотная характеристика с использованием импульсных методов, измеренная или рассчитанная в цифровом виде. Во всех случаях динамическая система и ее характеристика могут быть реальными физическими объектами или математическими уравнениями, описывающими такие элементы.

    Математическое описание импульсов

    Поскольку рассматриваемая функция содержит все частоты, критерии и описание определяют отклик линейной временной инвариантной конструкции для всех величин. Математически как описывается импульс, зависит от того, смоделирована ли система дискретным или непрерывным временем. Его можно моделировать как дельта-функцию Дирака для систем непрерывного времени или как величину Кронекера для конструкции с прерывным действием. Первая представляет собой предельный случай импульса, который был очень коротким по времени, сохраняя свою площадь или интеграл (тем самым давая бесконечно высокий пик). Хотя это невозможно в любой реальной системе, это полезная идеализация. В теории анализа Фурье такой импульс содержит равные части всех возможных частот возбуждения, что делает его удобным тестовым зондом.

    Любая система в большом классе, известная как линейная, инвариантная по времени (LTI), полностью описывается импульсной характеристикой. То есть для любого входа выход можно рассчитать в терминах ввода и непосредственной концепции рассматриваемой величины. Импульсное описание линейного преобразования представляет собой образ дельта-функции Дирака при преобразовании, аналогичный фундаментальному решению дифференциального оператора с частными производными.

    Особенности импульсных конструкций

    Обычно проще анализировать системы, используя передаточные импульсные характеристики, а не ответы. Рассматриваемая величина представляет собой преобразование Лапласа. Усовершенствование ученым выходного сигнала системы может быть определено умножением передаточной функции на это действие ввода в комплексной плоскости, также известной как частотная область. Обратное преобразование Лапласа этого результата даст выход во временной области.

    Для определения выхода непосредственно во временной области требуется свертка входа с импульсной характеристикой. Когда передаточная функция и преобразование Лапласа ввода известны. Математическая операция, применяющаяся на двух элементах и реализующая третий, может быть более сложной. Некоторые предпочитают альтернативу - умножение двух функций в частотной области.

    Реальное применение импульсной характеристики

    В практических системах невозможно создать идеальный импульс для ввода данных для тестирования. Поэтому короткий сигнал иногда используется в качестве приближения величины. При условии, что импульс достаточно короткий, по сравнению с откликом, результат будет близок к истинному, теоретическому. Однако во многих системах вхождение с очень коротким сильным импульсом может привести конструкцию в нелинейный режим. Поэтому вместо этого она управляется псевдослучайной последовательностью. Таким образом, импульсная переходная характеристика рассчитывается из входных и выходных сигналов. Отклик, рассматриваемый как функция Грина, можно рассматривать как «влияние» - как точка входа влияет на выход.

    Характеристики импульсных устройств

    Колонки являются приложением, которое демонстрирует саму идею (была разработка тестирования импульсного отклика в 1970-х годах). Громкоговорители страдают от неточности фазы, дефекта, в отличие от других измеренных свойств, таких как частотная характеристика. Этот недоработанный критерий вызван (слегка) задержанными колебаниями/октавами, которые в основном являются результатом пассивных кросс-передач (особенно фильтров более высокого порядка). Но также вызваны резонансом, внутренним объемом или вибрированием панелей корпуса. Отклик - конечная импульсная характеристика. Его измерение обеспечило инструмент для использования в уменьшении резонансов за счет применения улучшенных материалов для конусов и корпусов, а также изменения кроссовера динамиков. Необходимость ограничить амплитуду для поддержания линейности системы привела к использованию входов, таких как псевдослучайные последовательности максимальной длины, и к помощи компьютерной обработки для получения остальных сведений и данных.

    Электронное изменение

    Анализ импульсного отклика является основным аспектом радиолокации, ультразвуковой визуализации и многих областей цифровой обработки сигналов. Интересным примером могут быть широкополосные интернет-соединения. DSL-услуги используют методы адаптивного выравнивания, чтобы помочь компенсировать искажения и помехи сигнала, введенные медными телефонными линиями, используемыми для доставки услуги. В их основе лежат устаревшие цепи, импульсная характеристика которых оставляет желать лучшего. На смену пришли модернизированные покрытия для использования Интернета, телевидения и других устройств. Эти усовершенствованные конструкции способны улучшать качество, особенно с учетом того, что современный мир - это сплошное интернет-соединение.

    Системы контроля

    В теории управления импульсная характеристика представляет собой отклик системы на вход дельта Дирака. Это полезно при анализе динамических конструкций. Преобразование Лапласа дельта-функции равно единице. Поэтому импульсная характеристика эквивалентна обратному преобразованию Лапласа передаточной функции системы и фильтру.

    Акустические и звуковые приложения

    Здесь импульсные ответы позволяют записывать звуковые характеристики местоположения, например, концертного зала. Доступны различные пакеты, содержащие оповещения от конкретных мест, от небольших комнат до крупных концертных залов. Эти импульсные отклики могут затем использоваться в приложениях реверберации свертки, чтобы позволить акустическим характеристикам конкретного местоположения применяться к целевому звуку. То есть по факту происходит анализ, разделение различных оповещений и акустики через фильтр. Импульсная характеристика в данном случае способна дать возможность выбора пользователю.

    Финансовая составляющая

    В современном макроэкономическом моделировании функции импульсного ответа используются для описания того, как она реагирует со временем на экзогенные величины, которые научные исследователи обычно называют потрясениями. И часто имитируются в контексте векторной авторегрессии. Импульсы, которые часто считаются экзогенными, с макроэкономической точки зрения включают изменения в государственных расходах, ставках налогов и других параметрах финансовой политики, изменения денежной базы или других параметров капитала и кредитной политики, перемены производительности или других технологических параметров; преобразование в предпочтениях, такие как степень нетерпения. Функции импульсного отклика описывают реакцию эндогенных макроэкономических переменных, таких как выход, потребление, инвестиции и занятость во время шока и в последующие моменты времени.

    Конкретнее об импульсе

    По существу дела, ток и импульсная характеристика взаимосвязаны. Потому что каждый сигнал может быть смоделирован как серия. Это происходит ввиду наличия определенных переменных и электричества или генератора. Если система является как линейной, так и временной, реакция прибора на каждый из откликов может быть вычислена с использованием рефлексов рассматриваемой величины.