Подключение светодиодной шкалы часть 1. LM3914N драйвер светодиодной шкалы. Включение светодиодов от блока питания

Микросхема драйвера светодиодной шкалы LM3914.

На основе этой микросхемы можно конструировать светодиодные индикаторы с линейной шкалой. В основе микросхемы LM3914 заложены 10 компараторов.

Входной сигнал через операционный усилитель подается на инверсные входы компараторов LM3914, а прямые входы их подключены к резисторному делителю напряжения. К десяти выходамкомпараторов подключаются светодиоды.

В микросхеме есть выбор режима индикации, столбик или режим точка, то есть с изменением уровня сигнала, перемещаясь по линейке светится только один светодиод.

выводы LM3914N:

10…18 - выходы.

2 - минус питания.

3 - плюс источника питания от 3…18 вольт.

4 - на данный вывод подается напряжение, величина которого определяет нижний уровень индикации. Допустимый уровень от 0 до Uпит.

5 - на данный вывод подается входной сигнал.

6 - на данный вывод подается напряжение, величина которого определяет верхний уровень индикации. Допустимый уровень от 0 до Uпит.

7, 8 - выводы для регулирования тока, протекающего через светодиоды.

9 - вывод отвечает за режим работы индикации («точка» или «столбик»)

Порог переключения светодиодов вычисляется автоматически микросхемой по формуле Uв. – Uн.)/10

Работа индикатора на микросхеме LM3914N

Пока на ножке Uвх. сигнал ниже чем напряжение на выводе Uн., светодиоды не горят. Как только входной сигнал сравняется с Uн. – загорится светодиод HL1. При последующем увеличении сигнала, в режиме «точка» выключается HL1 и одновременно загорается HL2. В том случае если LM3914 функционирует в режиме «столбик», то при включении HL2, HL1 не гаснет. Для выбора одного из двух режимов работы нужно сделать следующее:

  • Режим «точка» - вывод 9 подключить к минусу питания или оставить неподключенным.
  • Режим «столбик» - вывод 9 подсоединить к плюсу питания микросхемы.


Для контроля напряжения довольно часто применяют светодиодные шкалы.
Рассмотрим несколько способов построения таких схем.
Пассивные шкалы питаются от источника сигнала, и имеют самую простую схему.


Это может быть автомобильный вольтметр. Тогда VD8 следует выбрать на 12 вольт, так как он задаёт напряжение засветки первого светодиода на шкале. Следующие светодиоды VD2 - VD4 подключены через диодные переходы VD5-VD7. Падение на каждом диоде составляет в среднем 0.7 вольта. При росте напряжения произойдёт поочерёдное включение светодиодов.
Если поставить в каждое плечо два- три диода, то шкала растянется по напряжению в соответствующее количество раз.


По такой схеме строится индикатор батарей от 3V до 24V

Ещё один способ построения линейки диодов.


В этой схеме светодиоды зажигаются парами, шаг включения 2.5 вольта (зависит от типа светодиода).
У всех представленных выше схем имеется один недостаток - очень плавная засветка светодиодов при росте напряжения. Для более резкого включения в такие схемы добавляют транзисторы в каждом плече.

Теперь рассмотрим активные шкалы.
Есть для этой цели специализированные микросхемы, но мы будем рассматривать более доступные элементы, которые у большинства есть под рукой. Ниже схема на логических повторителях. Тут подойдут микросхемы логики 74ls244, 74ls245 на 8 каналов. Не забываем подать питание +5 вольт на саму микросхему (на схеме не указано).


Порог срабатывания первого елемента DD1
равен логическому уровню для данной серии микросхем.

Если мы используем в такой схеме инверторы типа К155ЛН1, К155ЛН2, 7405, 7406 . То подключение будет следующим:


Плюс в том, что в такой схеме работает выход с открытым коллектором, это позволяет применять в схеме сборки ULN2003 и им подобные.
Ну и последнее, это реализация бегущей точки на логических элементах 4и-не.

Логика работает таким образом что каждый элемент при включении запрещает работу всем элементам младшего номера. В данной схеме применимы микросхемы К155ЛА6. Последние два элемента DD3 и DD4 как видно из схемы могут быть на два входа, например: К155ЛА3, К155ЛА8.
Для батарейных устройств желательно применять низкопотребляющие аналоги из 176 и 561серий микросхем.

Светодиоды - полупроводниковые приборы, преобразующие электроток в непосредственное световое излучение.

Как подключить светодиод через резистор или напрямую, а главное сделать такое подсоединение безопасным в эксплуатации и долговечным - основные вопросы, которые рассматриваются с целью обеспечения работоспособности любых светоизлучающих диодов.

Самостоятельное определение светодиодной полярности осуществляется несколькими несложными методами:

  • посредством измерений;
  • по результатам визуальной оценки;
  • при подключении к источнику питания;
  • в процессе ознакомления с технической документацией.

К числу самых распространенных вариантов определения полярности светоизлучающих диодов относятся первые три способа, которые должны выполняться с соблюдением стандартной технологии.

Использование тестирующих устройств

С целью максимально точного определения светодиодной полярности, щупы подключаются непосредственно к диоду, после чего отслеживаются показания тестера. При высвечивании на шкале «бесконечного» сопротивления, провода щупов меняются местами.

Если тестер показывает какие-либо показатели конечного значения в условиях замеров сопротивления проверяемых светоизлучающих диодов, то можно быть уверенным в подключении прибора с соблюдением вида полярности, а данные о расположении «плюса» и «минуса» являются точными.

Проверка светодиодов мультиметром

Визуальное определение полярности

Несмотря на множество существующих в настоящее время видов конструкций , наиболее широкое распространение получили излучающие свет диоды, заключенные в цилиндрический корпус D от 3,5 мм.

Наиболее мощные диоды сверх яркого типа обладают планарными плоскими выводами, промаркированными «+» и «-».

Устройства в цилиндрическом корпусе имеют внутри пару электродов, отличающихся площадью. Именно катодная часть светоизлучающих диодов отличается большей электродной площадью и наличием характерного скоса на «юбке».

Светодиоды, применяемые в поверхностном монтаже, обладают специальным скосом или «ключом», указывающим на катод или минусовую полярность.

Подключение к источнику питания

Передача питания от элементов с постоянным напряжением - один из самых наглядных вариантов определения диодной полярности, требующий использования специального блока с поступательным регулированием напряжения, или традиционной аккумуляторной батареи. После подключения, постепенно повышаются показатели напряжения, что вызывает свечение светодиода и свидетельствует о правильном определении полярности.

Подключение диодов к питанию

Чтобы проверить работоспособность светового диода, в обязательном порядке подключается резистор токоограничивающего типа с сопротивлением от 680 Ом.

Этапы сборки

При самостоятельной сборке и последующем тестировании излучающих свет диодов в рабочем режиме, целесообразно воспользоваться данной последовательностью:

  • определиться с техническими характеристиками, отраженными в сопроводительной документации;
  • составить схему подключения с учетом уровня напряжения;
  • вычислить показатели потребляемой мощности электроцепи;
  • подобрать драйвер или блок питания с оптимальной мощностью;
  • рассчитать резистор при стабилизированном напряжении;
  • определить полярность LЕD-источника;
  • припаять провода к светодиодным выходам;
  • подсоединить источник питания;
  • зафиксировать диод на радиаторе.

Процесс тестирования излучающих свет диодов, заключается в подключении собранной конструкции к электрической сети и замере потребляемого тока.

Звезда устанавливается на радиатор посредством теплопроводной пасты, а припаивать провода следует достаточно мощным паяльником, что обусловлено естественным забором алюминием тепла, с участка контакта и припоя.

Источники питания

Для подключения светодиода применяются специальные источники питания, разрабатываемые согласно установленным требованиям и нормативам. В процессе проектирования, потребуется определиться с коэффициентом мощности, энергетической эффективностью и уровнем пульсации.

Основной особенностью современных источников питания является наличие встроенного корректора коэффициента мощности, а приборы для внутреннего освещения отличаются повышенными требованиями к уровню токовой пульсации.

Схемы подключения светодиодов

Если источник питания в виде светоизлучающих диодов, предполагается применять в наружном освещении, то показатели защиты такого устройства должны составлять IP-67 при широком температурном диапазоне.

Источниками светодиодного питания в условиях токовой стабилизации обеспечиваются постоянные показатели выходного тока в широком диапазоне. Если источник для LЕD-светильника имеет стабилизацию по показателям напряжения, то формируется постоянное напряжение выходного типа в условиях токовой нагрузки, но не более максимально допустимых значений. В некоторых современных приборах присутствует комбинированная стабилизация.

Как подключить светодиод

Обеспечение работоспособности излучающих свет диодов, предполагает не только наличие источника питания, но и строгого соблюдения схемы подключения.

К 1,5 В

Показатели рабочего напряжения светоизлучающих диодов, как правило, превышают 1,5 В, поэтому сверх яркие светодиоды нуждаются в источнике питания не менее 3,2-3,4 В. При подключении применяется преобразователь напряжения в виде блокинг-генератора на резисторе, транзисторе и трансформаторе.

Запитываем светодиод к 1,5 ватт

Использование упрощенной схемы, лишенной стабилизатора, позволяет обеспечивать непрерывную работоспособность светоизлучающих диодов до снижения напряжения в элементе питания до показателей 0,8 В.

К 5 В

Подключение светодиода к элементу питания с номинальными токовыми показателями на уровне 5 В предполагает подсоединение резистора, имеющего сопротивление в пределах 100-200 Ом.

Параллельное подключение светодиодов

Если подключение в 5 вольт необходимо для установки пары диодов, то в электрическую цепь последовательным способом включается резистор ограничительного типа с сопротивлением не более 100 Ом.

К 9 В

Батарейка типа «Крона» обладает относительно небольшой емкостью, поэтому такой источник питания очень редко применяется для подключения достаточно мощных светодиодов. Согласно максимальному току, не превышающему 30-40 мА, чаще всего осуществляется последовательное подсоединение трёх светоизлучающих диодов, имеющих рабочий ток 20 мА.

К 12 В

Стандартный алгоритм подключения диодов к элементу питания на 12 В включает в себя определение типа блока, нахождение номинального тока, напряжения и потребляемой мощности, а также подсоединение к выводам с обязательным соблюдением полярности. В этом случае резистор размещается на любом участке электрической цепи.

Контакты на участках подсоединения излучающих свет диодов надежно запаиваются, а после штатной проверки работоспособности - изолируются специальной лентой.

К 220 В

При использовании , в обязательном порядке ограничивается ток, который будет протекать через световой диод, что предотвратит перегрев и выход светоизлучающего прибора из строя. Также необходимо понизить уровень обратного светодиодного напряжения с целью предупреждения пробоя.

Схема подключения светодиодов к 220 вольт

Ограничение уровня тока в условиях переменного напряжения осуществляется резисторами, конденсаторами или катушками индуктивности. Питание диода при постоянном напряжении предполагает использование исключительно резисторов.

Питание светодиодов от 220 В своими руками

Драйвер для диодных источников света на 220 В, является неотъемлемой частью сборки безопасного и долговечного прибора, и изготовить такое устройство вполне можно самостоятельно. Чтобы светоизлучающие диоды смогли работать от традиционной сети, потребуется уменьшить амплитуду напряжения, снизить силу тока, а также выполнить преобразование переменного напряжения в постоянные показатели. С этой целью используется делитель, имеющий резисторную или ёмкостную нагрузку, а также стабилизаторы.

Подключение светодиодной ленты к 220 В

Надежным самодельным драйвером для диодных источников света на 220 В, может выступать элементарный импульсный блок питания, не обладающий гальванической развязкой. Самым главным преимуществом такой схемы является простота исполнения, дополненная надёжностью эксплуатации.

Однако при самостоятельном выполнении сборки нужно соблюдать максимальную осторожность, так как особенностью данной схемы является полное отсутствие ограничений по показателям отдаваемого тока.

Безусловно, светодиодами будут забираться стандартные 1,5 А, но соприкосновение рук с оголенными проводами спровоцирует повышение до 10 А и более, что весьма ощутимо.

В основе стандартной схемы простейшего светодиодного драйвера на 220В лежат три главных каскада, представленные:

  • делителем напряжения на показателях сопротивления;
  • диодным мостом;
  • стабилизацией напряжения.

Для сглаживания пульсации напряжения, потребуется в параллельном направлении цепи подключить электролитический конденсатор, ёмкость которого подбирается индивидуально, в соответствии с мощностью нагрузки.

Стабилизатором в этом случае вполне может выступать общедоступный элемент L-7812. Следует отметить, что собранная таким способом схема диодных источников света на 220 вольт отличается стабильной работоспособностью, но перед включением в электрическую сеть обязательно производится тщательная изоляция оголённых проводов и участков пайки.

Проблема в том, что данный набор уже перестали выпускать, поэтому придётся импровизировать и закупаться запчастями по отдельности. Стоит особо отметить, что основа схемы – чип UAA180 или отечественный аналог 1003ПП1. Зная теперь это вам не составит труда собрать своими руками приборы со шкалой светодиодов для своего автомобиля.

Назначение выводов микросхемы:
1 – земля;
18 – питание до +18 Вольт;
17 – вход для измеряемого напряжения;
16 – эталонный нижний уровень измеряемого напряжения;
3 – эталонный верхний уровень;
2 – управлени яркостью свечения светодиодов;
4..15 – выводы управления включением светодиодами.

Микросхема делит разницу напряжений между 3й и 16й ногой на 12 диапазонов, и если напряжение на 17й ноге попадает в один из этих диапазонов, то зажигается соответствующий светодиод. Однако, есть ограничения: напряжения на измерительных выводах не могут быть больше 6 Вольт.
Чтобы ограничить измеряемое напряжение, соберём измерительную цепочку из стабилитрона и двух резисторов. Пусть V – напряжение в бортовой сети. В цепочке из стабилитрона VD1 и сопротивлений R1, R2 напряжение на стабилитроне будет постоянным 9 Вольт (приблизительно), а на мостике R1, R2 оно будет равно (V-9). При одинаковых сопротивлениях R1=R2 напряжение на сопротивлении R2 получится равным половине (V-9), т.е. если в сети напряжение V будет меняться от 10 до 15 Вольт, то напряжение в точке между R1 и R2 будет меняться от (10-9)/2 =0,5 до (15-9)/2 =3 Вольт.
Цепочка R3, R4, R5 и стабилитрон VD2 задают эталонные минимальное и максимальное напряжение. Минимальное ноль, т.к. 16 нога на земле. Максимальное устанавливается подстроечным резистором на уровне около 3 Вольт. При такой настройке получается возможным измерение напряжения бортовой сети в диапазоне от 9 до 15 Вольт с шагом 0,5 Вольта на один светодиод.
Цепочка R6, R7 просто задаёт яркость свечения диодов. При R6=50К яркость больше, при 100К меньше.

Варианты схем со шкалой «бегающая точка» и «светящийся столб» отличаются только подключением светодиодов к микросхеме. Измерительные цепи остаются такими же.

Настройка схемы выполняется следующим образом. Вольтметр нужно подключить к эталонному источнику 14,7В, повернуть подстроечный резистор так, чтобы загорелся столб из 11 светодиодов, затем медленно поворачивать подстроечник в обратную сторону до того положения, пока 11й светодиод не погаснет и в столбе останется только 10 включенных светодиодов.
Подразумевается, что шкала имеет масштаб 2 светодиода на 1 Вольт, и включение 11го светодиода соответствует достижению измеряемым напряжением уровня 14,7В так, как это показано на рисунке ниже.

Над светодиодами в передней панели вольтметра сделана цветная разметка диапазонов напряжения:
до 11,6В - красный, заряд АКБ менее 50%;
11,6-12,6В - красный пунктир, заряд АКБ 50-100%;
12,6В - зеленая точка, заряд 100%;
13,7-14,7В - зеленый, напряжение генератора в норме;
более 14,7В - красный, перезаряд.

Схему спаял в варианте "светящийся столб". На рисунке внизу общий вид того, что получилось. Подсветку сделал одной безцокольной автомобильной лампочкой на 12В.

Собиралось все приблизительно так, как на картинке ниже.

Рисунок платы. Сделано в зеркальном отражении, чтобы переводить отпечаток на фольгу для травления. Если печатать с плотностью 300 точек на дюйм, то получим картинку в масштабе 1:1.

Размещение деталей. Вид со стороны монтажа радиодеталей. Дорожки на самом деле с другой стороны платы, но здесь нарисованы видимыми, как будто плата прозрачная.

Во время работы прибора на автомобиле обнаружился недостаток.

Из-за дискретности шкалы последний в светящемся столбе светодиод часто работает в мерцающем режиме. Не всегда, но часто. По началу мигание отвлекает внимание, правда, потом привыкаешь, а мигание воспринимается, как попытка прибора изобразить половину деления дискретной шкалы.

Указатель уровня топлива

Указатель остатка топлива на самом деле является омметром и измеряет сопротивление датчика-реостата. Если подключить переменное соротивление к указателю, то его показания должны соответствовать следующему:
0 Ом – стрелка лежит на левом краю шкалы;
15 Ом – стрелка на границе красной и белой зоны;
45 Ом – стрелка на линии 1/2;
90 Ом – стрелка на линии 1;
при разрыве стрелка на правом краю шкалы;

Из предыдущей схемы получается довольно простая схема указателя уровня топлива, т.к. в качестве омметра можно использовать вольтметр, который измеряет напряжение на сопротивлении, через которое протекает стабилизированный ток.

Стабилизатор 78L03 при таком подключении работает, как источник тока 30 мА. Стабилитрон на 3В нужен для защиты измерительного входа микросхемы от перенапряжения в случае "обрыва" провода датчика. При КЗ датчика показания должны быть, как для пустого бака.
Цепочка R3, C3 замедляет изменение напряжения на измерительном входе 17 микросхемы UAA180. Постоянная времени цепочки около 2 секунд. Такое замедление должно предотвращать скачки в показаниях прибора при колебаниях поплавка датчика вместе с уровнем бензина во время движения.
Для настройки прибора вместо датчика-реостата нужно подключить сопротивление 90 Ом и, вращая подстроечный резистор, найти момент включения полного светящегося столба.
На рисунке ниже передняя панель указателя.

После установки приборов на автомобиль был замечен такой недостаток в работе указателя остатка топлива.
При полном баке все хорошо, а, вот, когда бак становится пустым больше, чем на половину, то во время движения (в поворотах, или при разгоне/торможении) показания могут меняться на 3 деления (а это четверь шкалы!), например, от 1 до 4 светодиодов. Очевидно, что это связано с переливанием бензина по горизонтально расположенному баку под действием сил инерции. Как с этим бороться пока не очень понятно.

Рисунок платы.

Размещение деталей.

Термометр

В книжках пишут, что зависимость сопротивления исправного датчика ТМ-100А (штатный датчик на УЗАМ) от температуры должна быть такой:

Градусы – Омы 40 – 400...530 80 – 130...160 100 – 80...95 120 – 50...65

Зависимость обратная, да еще и не линейная. Но датчик логометрического типа. Такой датчик обеспечивает изменение тока в обмотке указателя пропорционально измеряемой величине. Получается интересная штука: если такой датчик включить последовательно с правильно подобранным дополнительным сопротивлением (равным сопротивлению обмотки измерителя), подать на эту цепочку стабилизированное напряжение, то на этом дополнительном сопротивлении напряжение будет пропорционально температуре. Это дополнительное сопротивление приблизительно равно 150 Ом. Из-за того, что датчик температуры должен устанавливаться на массу, схема простой не получилась. То, что получилось, представлено на рисунке.

Пояснение для тех, кто захочет разобраться в схеме.
Схема сделана шиворот на выворот. Представьте часы, у которых стрелка часов всегда смотрит вверх, а циферблат вращается под стрелкой. 17я нога, которая должна быть подключена к измеряемому напряжению, подключена к стабилизированным 3 Вольтам. Разница измеряемых мин. и макс. напряжений между 16й и 3ей ногой тоже стабилизированная, около 3х Вольт, но напряжения на 16й и 3й ноге меняются синхронно, «плавают» вокруг напряжения на 17й ноге. В целом схема работает так, что показания шкалы светодиодов соответствуют напряжению на резисторе R3. Мостики со стабилитронами нужны для поддержания напряжений-границ измеряемого диапазона.

Однако, оказалось, что в схеме термометра можно обойтись без стабилизации вообще. Ниже приведена гораздо более простая схема. Она основана на том, что как бы не изменялось напряжение питания схемы при постоянной температуре, пропорция напряжений на входах микросхемы U16:U17:U3 будет оставаьтся постоянной. Абсолютные величины будут меняться, но их отношение друг к другу нет.

Мостик R4-R5-R6 устанавливает границы измеряемого диапазона. Подстроечник R1 позволяет сдвигать показания в большую или меньшую сторону. Сопротивление R3 необходимо для понижения напряжения питания до уровня, при котором напряжение на входах DA1 не будет превышать предельно допустимого в 6В.

Такую схему можно использовать только в режиме светящаяся точка. Дело в том, что при минимальной температуре измеряемое в этой схеме напряжение максимально. С повышением температуры напряжение уменьшается до минимального. Чтобы светящаяся точка двигалась по шкале слева направо с увеличением температуры, а не наоборот, достаточно расположить светодиоды на индикаторе в обратном порядке. Но такое возможно только для светящейся точки. Светящийся столб в обратном порядке не зажигается.

Чтобы "перевернуть" напряжение относительно середины измеряемого диапазона можно добавить в схему инвертор на операционном усилителе.

Номиналы сопротивлений, задающих напряжения на входах 3 и 16, подобраны таким образом, чтобы полная шкала в 12 светодиодов соответствовала диапазону в 80оС.

Схема настраивается следующим образом. Можно опустить датчик температуры в кипящую воду, либо вместо датчика к схеме подсоединить сопротивление 91 Ом и подстроечным резистором найти момент переключения светящегося столба с 10 на 11 светодиодов, что должно соответствовать точке кипения воды - 100оС.

В общем номиналы сопротивлений и настройка должны соответствовать вот такой передней панели термометра.

У термометра обнаружился такой недостаток.

Т.к. шкала была рассчитана в масштабе 3 светодиода на 20оС, то один диод перекрывает диапазон приблизительно в 7 градусов. Если во время езды на шкале горит 10 диодов, то температура может быть от 93 до 100оС, а сколько именно, сказать нельзя. В то же время на автомобильном термометре не нужна растянутая левая часть шкалы для низких температур. Поэтому при повторении конструкции лучше будет сделать термометр с масштабом 5оС на диод, например, от 50 до 110оС так, как на рисунке ниже.

Рисунок платы.

На сегодняшний день существуют сотни разновидностей светодиодов, отличающихся внешним видом, цветом свечения и электрическими параметрами. Но всех их объединяет общий принцип действия, а значит, и схемы подключения к электрической цепи тоже базируются на общих принципах. Достаточно понять, как подключить один индикаторный светодиод, чтобы затем научиться составлять и рассчитывать любые схемы.

Распиновка светодиода

Прежде чем перейти к рассмотрению вопроса о правильном подключении светодиода, необходимо научиться определять его полярность. Чаще всего индикаторные светодиоды имеют два вывода: анод и катод. Гораздо реже в корпусе диаметром 5 мм встречаются экземпляры, имеющие 3 или 4 вывода для подключения. Но и с их распиновкой разобраться тоже несложно.

SMD-светодиоды могут иметь 4 вывода (2 анода и 2 катода), что обусловлено технологией их производства. Третий и четвёртый выводы могут быть электрически незадействованными, но использоваться в качестве дополнительного теплоотвода. Приведенное расположение выводов не является стандартом. Для вычисления полярности лучше сначала заглянуть в datasheet, а затем подтвердить увиденное мультиметром. Визуально определить полярность SMD-светодиода с двумя выводами можно по срезу. Срез (ключ) в одном из углов корпуса всегда расположен ближе к катоду (минусу).

Простейшая схема подключения светодиода

Нет ничего проще, чем подключить светодиод к низковольтному источнику постоянного напряжения. Это может быть батарейка, аккумулятор или маломощный блок питания. Лучше, если напряжение будет не менее 5 В и не более 24 В. Такое подключение будет безопасным, а для его реализации понадобится лишь 1 дополнительный элемент – маломощный резистор. Его задача – ограничить ток, протекающий через p-n-переход на уровне не выше номинального значения. Для этого резистор всегда устанавливают последовательно с излучающим диодом.

Всегда соблюдайте полярность при подключении светодиода к источнику постоянного напряжения (тока).

Если из схемы исключить резистор, то ток в цепи будет ограничен только внутренним сопротивлением источника ЭДС, которое очень мало. Результатом такого подключения станет мгновенный выход из строя излучающего кристалла.

Расчёт ограничительного резистора

Взглянув на вольт-амперную характеристику светодиода, становится понятно: насколько важно не ошибиться при расчёте ограничительного резистора. Даже небольшой рост номинального тока приведёт к перегреву кристалла и, как следствие, к снижению рабочего ресурса. Выбор резистора производят по двум параметрам: сопротивлению и мощности. Сопротивление рассчитывают по формуле:

  • U – напряжение питания, В;
  • U LED – прямое падение напряжения на светодиоде (паспортное значение), В;
  • I – номинальный ток (паспортное значение), А.

Полученный результат следует округлить до ближайшего номинала из ряда Е24 в большую сторону, а затем рассчитать мощность, которую должен будет рассеивать резистор:

R – сопротивление резистора, принятого к установке, Ом.

Более подробную информацию о расчётах с практическими примерами можно получить в статье . А тот, кто не желает погружаться в нюансы, может быстро рассчитать параметры резистора с помощью онлайн-калькулятора.

Включение светодиодов от блока питания

Речь пойдёт о блоках питания (БП), работающих от сети переменного тока 220 В. Но даже они могут сильно отличаться друг от друга выходными параметрами. Это могут быть:

  • источники переменного напряжения, внутри которых есть только понижающий трансформатор;
  • нестабилизированные источники постоянного напряжения (ИПН);
  • стабилизированные ИПН;
  • стабилизированные источники постоянного тока (светодиодные драйверы).

Подключить светодиод можно к любому из них, дополнив схему нужными радиоэлементами. Чаще всего в качестве блока питания применяют стабилизированные ИПН на 5 В или 12 В. Данный тип БП подразумевает, что при возможных колебаниях напряжения сети, а также при изменении тока нагрузки в заданном диапазоне напряжение на выходе изменяться не будет. Это преимущество позволяет подключать к БП светодиоды, используя только резисторы. И именно такой принцип подключения реализован в схемах с индикаторными светодиодами.
Подключение мощных светодиодов и нужно производить через стабилизатор тока (драйвер). Несмотря на их более высокую стоимость, только так можно гарантировать стабильную яркость и продолжительную работу, а также исключить преждевременную замену дорогостоящего светоизлучающего элемента. Такое подключение не требует наличия дополнительного резистора, а светодиод присоединяется непосредственно к выходу драйвера с соблюдением условия:

  • I драйвера - ток драйвера по паспорту, А;
  • I LED - номинальный ток светодиода, А.

При несоблюдении условия, подключенный светодиод перегорит от перегрузки по току.

Последовательное подключение

Собрать рабочую схему на одном светодиоде – несложно. Другое дело, когда их несколько. Как правильно подключить 2, 3 … N светодиодов? Для этого нужно научиться рассчитывать более сложные схемы включения. Схема последовательного подключения представляет собой цепь из нескольких светодиодов, в которой катод первого светодиода соединен с анодом второго, катод второго с анодом третьего и так далее. Через все элементы схемы течёт ток одинаковой величины:

А падения напряжений суммируются:

Исходя из этого, можно сделать выводы:

  • объединять в последовательную цепь целесообразно только светодиоды с одинаковым рабочим током;
  • при выходе из строя одного светодиода произойдёт обрыв цепи;
  • количество светодиодов ограничено напряжением БП.

Параллельное подключение

Если от БП с напряжением, например, 5 В, необходимо зажечь несколько светодиодов, то их придется соединить между собой параллельно. При этом последовательно с каждым светодиодом нужно поставить резистор. Формулы для расчёта токов и напряжений примут следующий вид:

Таким образом, сумма токов в каждой ветви не должна превышать максимально допустимый ток БП. При параллельном подключении однотипных светодиодов достаточно рассчитать параметры одного резистора, а остальные – будут такого же номинала.

Все правила последовательного и параллельного подключения, наглядные примеры, а также информацию о том, как нельзя включать светодиоды, можно найти в .

Смешанное включение

Разобравшись со схемами последовательного и параллельного подключения, пришло время комбинировать. Один из вариантов комбинированного подключения светодиодов показан на рисунке.

Кстати, именно так устроена каждая светодиодная лента.

Включение в сеть переменного тока

Подключать светодиоды от БП не всегда целесообразно. Особенно, если речь идёт о необходимости сделать подсветку выключателя или индикатор наличия напряжения в сетевом удлинителе. Для подобных целей достаточно будет собрать одну из простых . Например, схема с токоограничительным резистором и выпрямительным диодом, защищающим светодиод от обратного напряжения. Сопротивление и мощность резистора вычисляют по упрощённой формуле, пренебрегая падением напряжения на светодиоде и диоде, так как оно на 2 порядка меньше напряжения сети:

Из-за большой мощности рассеивания (2–5 Вт), резистор часто заменяют неполярным конденсатором. Работая на переменном токе, он как бы «гасит» лишнее напряжение и почти не нагревается.

Подключение мигающих и многоцветных светодиодов

Внешне мигающие светодиоды ничем не отличаются от обычных аналогов и могут мигать одним, двумя или тремя цветами по заданному производителем алгоритму. Внутреннее отличие состоит в наличии под корпусом ещё одной подложки, на которой расположен интегральный генератор импульсов. Номинальный рабочий ток, как правило, не превышает 20 мА, а падение напряжения может варьироваться от 3 до 14 В. Поэтому перед подключением мигающего светодиода нужно ознакомиться с его характеристиками. Если их нет, то узнать параметры можно экспериментальным путём, подключившись к регулируемому БП на 5–15 В через резистор сопротивлением 51-100 Ом.

В корпусе многоцветного расположены 3 независимых кристалла зелёного, красного и синего цвета. Поэтому при расчёте номиналов резисторов нужно помнить, что каждому цвету свечения соответствует своё падение напряжения.

Ещё раз о трёх важных моментах

  1. Прямой номинальный ток – главный параметр любого светодиода. Занижая его, мы теряем в яркости, а завышая – резко сокращаем срок службы. Поэтому лучшим источником питания является светодиодный драйвер, при подключении к которому через светодиод всегда будет протекать постоянный ток нужной величины.
  2. Напряжение, приведенное в datasheet к светодиоду, не является определяющим и лишь указывает на то, сколько вольт упадёт на p-n-переходе при протекании номинального тока. Его значение необходимо знать для того, чтобы правильно вычислить сопротивление резистора, если светодиод будет работать от обычного БП.
  3. Для подключения мощных светодиодов важно не только надёжное электропитание, но и качественная система охлаждения. Установка на радиатор светодиодов с мощностью потребления более 0,5 Вт станет залогом их стабильной и продолжительной работы.

Читайте так же