Объем зя для 12 сабвуфера. Расчет корпуса для сабвуфера и практический взгляд на создание его своими руками. Какие материалы нам потребуются для сборки сабвуфера

// Что будет, если сделать слишком малый или очень большой короб для сабвуферного динамика?

Что будет, если сделать слишком малый или очень большой короб для сабвуферного динамика?

18 сентября на стриме Сергея Туманова прозвучал вопрос: «В чём разница 15 и 40 литрового ящика для динамика размером 10”?». Был дан ответ: 15 – слишком малый объем, а 40 — слишком большой. Давайте разберемся почему. Для лучшего понимания сразу оговоримся, что наши теоретические оформления и динамики к ним сделаны на совесть и герметичны, полярность подключения усилителя соблюдена.

Итак, мы имеем 2 ящика, пусть не 15 и 40 литров, а ящик с явно меньшим объёмом (рис. а,б,в) и явно большим объемом (рис. г,д,е), чем требуется данному динамику. Рассмотрим первый случай, когда объёма «мало». На рисунке А показан ящик в который смонтирован динамик, находящийся в равновесном положении и его импеданс минимален. Точками условно обозначен воздух внутри ящика. В данный момент на его катушку не подается
никакой сигнал.

Если подать на динамик с усилителя сигнал +/-, его подвижная часть под воздействием электрических сил пойдет вперед (рис б), но этим силам будет оказано сопротивление креплением подвижной части к корзине (шайба вместе с подвесом). В данной статье пренебрегаем силами шайбы, т.к речь идет о движении воздуха. Просто примем во внимание, что шайба, с некоторой силой, из любого положения пытается вернуть «подвижку» на место.

Огромный вклад в возвращение в равновесное положение внесет разрежённость, которую создал динамик, увеличивая объем камеры. Из школьного курса термодинамики (закон Бойля-Мариотта) мы знаем, что при изотермическом процессе, чем больше объём, тем меньше давление и наоборот. Так как количество воздуха в ящике маленькое и физически расширяться практически нечему, вакуум (слишком малое давление) будет тянуть подвижную систему обратно в равновесное положение.

Следствие – невозможно получить длинный ход данными электрическими силами. Требуется большая мощность. Похожая ситуация, когда на динамик подать -/+ сигнал и подвижная часть динамика совершает ход внутрь ящика (рис в), объем уменьшается, давление воздуха увеличивается и стремится вытолкнуть динамик в равновесное положение.

Выводы: с маленьким объемом закрытого ящика потенциал динамика не раскрывается как по громкости, так и по глубине воспроизведения.

Случай второй - когда объем сильно завышен (рис г,д,е). Главное отличие от первого случая такое, что изменение общего объёма при равновесном состоянии и объема, в одном из крайних положений, не так кардинально отличаются. А силы, действующие на возврат подвижной системы не такие большие.

И для того, чтоб вернуть динамик в равновесное положение малого давления и силы возврата шайбы, вместе с подвесом, становится недостаточно. Усилителю приходится подать сигнал обратный -/+, чтобы помочь вернуть динамик на место. Тут вступает в свои права понятие контроля усилителя, но об этом в следующий раз.

Итак, подаем сигнал +/- на динамик и подвижка уходит вперед (условно из ящика), (рис. д). Происходит всё то же - увеличение объёма и уменьшение давления, но в гораздо меньшей мере. И сопротивление к движению диффузора оказывается гораздо меньшее. Поэтому получаем вероятность вылета подвижной части из катушки, поломки динамика из-за превышения хода. Для борьбы с этим явлением используют усилители с более высоким демпинг-фактором.

Резюмируя выше сказанное: сверхмалый объём ЗЯ не раскроет потенциал динамика, а сверхбольшой может привести к выходу динамика из строя. Учитесь сабостроению в наших курсах! Если будет желание можно привести теоретические расчёты объемов и давлений для более наглядных результатов.

Антон Беломестных
https://vk.com/id177535382


НОВЫЙ ПОТОК ТРЕНИНГА "БЫСТРЫЕ ДЕНЬГИ В АВТОЗВУКЕ"
Успей вписаться по выгодной цене!



Понравилось? Поделись с друзьями, нажав на социальную кнопку!

Оставьте ваш комментарий

Предлагаемый метод расчета фазоинвертора основан на простейших измерениях, проводимых с вполне определенным экземпляром громкоговорителя, устанавливаемым в акустический фазоинвертор и на номографическом определении размеров последнего.

В первую очередь, руководствуясь рис. 1 и таблицей, необходимо изготовить «стандартный объем» — герметичный фанерный ящик, все стыки которого во избежание утечек воздуха тщательно подогнаны, проклеены и промазаны пластилином.

Малогабаритные колонки для качественного воспроизведения звука

Расчет закрытого ящика (Версия 2)

Акустическое оформление в виде закрытого ящика можно рассматривать как предельный случай ящика-фазоинвертора с бесконечно малым отверстием. Эквивалентная акустическая схема низкочастотной головки в закрытом ящике может быть получена, если в схеме рис. 3 отбросить элементы, относящиеся к инвертору. Соответствующая частотная характеристика громкоговорителя совпадает с уравнением (17) при y3 = y4 = 0.

Среди множества типов частотных характеристик, которые могут быть получены для громкоговорителя в виде закрытого ящика. Наибольший интерес представляют гладкие частотные характеристики Баттерворта второго порядка. Эти характеристики образуются при условии выполнения соотношений между параметрами головки и ящика, выраженных уравнением (27) при f b /f s = 0. Особенностью громкоговорителей с частотными характеристиками Баттерворта второго порядка является то обстоятельство, что частота среза f 3 (29) совпадает с резонансной частотой головки в ящике f c .

Расчет фазоинвертора

В связи с частыми письмами о помощи расчета того или иного акустического оформления, пишу эту статью. Я не буду ни кому рассчитывать оформление, не всегда есть время. Я это сайт создал специально для тех, кому интересна акустика и которые хотят в ней разбираться. Я лучше выложу для ленивых готовые варианты и примеры расчетов, а дальше сами разбирайтесь, крутите мозгами. И так.

В области низких частот работа громкоговорителя не зависит от формы ящика или типа фазоинвертора, а определяется лишь двумя параметрами акустического оформления — объемом ящика-фазоинвертора V и частотой его настройки F b . К нахождению этих величин и сводится в основном расчет акустического оформления.

FAQ по динамикам и сабвуферам

В связи с множественными вопросами, как рассчитать корпуса длядинамиков я выкладываю несколько статей, связанных с расчетом акустического оформления для динамиков. Не забываем, что акустическое оформление важно для НЧ-головок. И так начинаем....

В последнее время стало слышно очень много вопросов про динамики и сабвуферы. Подавляющее большинство ответов можно получить на первых трех страницах любой книги, написанной профессионалами. Материал адресован в первую очередь начинающим, ленивым;) и сельским самодельщикам, подготовлен на основе книг И.А.Алдощиной, В.К.Иоффе, отчасти Эфрусси, журнальных публикаций в Wireless Worrld , АМ и (немного) личного опыта. HЕ использовалась информация из Интернета и ФИДОнета. Материал никоим образом не претендует на полноту освещения проблемы, а представляет собой попытку объяснить на пальцах азы акустики.

Чаще всего вопрос звучит примерно так: "нашел динамик, что с ним делать?", или "Товарищч, а говорят такие сабвуферы бывают...". Здесь мы рассмотрим только один вариант решения этой проблемы: По имеющемуся динамику сделать ящик, с оптимальными параметрами на HЧ, насколько это возможно. Этот вариант сильно отличается от задачи заводского конструктора-натянуть нижнюю частоту системы до необходимой по ТУ величины

Звук в конце тоннеля

"Володя, будешь на складе - захвати порты для фазиков …"
(подслушано в одной из московских установочных студий)

Когда АвтоЗвук был еще маленьким и сидел под крылом Салона АВ , вышли в свет две первые части трилогии о сабвуферах - о том, чего ждать от разных типов акустического оформления и как подобрать динамик для закрытого ящика.

Значительная часть тех, кто, обдумывая житье, решил с пониманием отнестись к басовому вооружению своего автомобиля, этим, в принципе, уже могла бы обойтись. Но не все. Поскольку существует как минимум еще один, чрезвычайно популярный тип акустического оформления, по распространенности не уступающий закрытому ящику.

Фазоинвертор в отечественной литературе, bass reflex, ported box, vented box - в англоязычной - все это, по сути, звукотехническая реализация идеи резонатора Гельмгольца. Идея проста - замкнутый объем соединяется с окружающим пространством с помощью отверстия, содержащего некоторую массу воздуха. Вот именно существование этой массы - того самого столба воздуха, который, по утверждению Остапа Бендера, давит на любого трудящегося, и производит чудеса, когда резонатор Гельмгольца нанимают на работу в составе сабвуфера. Здесь мудреная вещь имени германского физика приобретает прозаическое имя тоннеля (по-буржуйски port или vent) .

Заряжаем....

Потом стал считать объем скрипичной коробки, и работа эта была долгая и увлекательная. …. Объем нельзя уменьшить - скрипка засипит, начнет глухо бубнить. Если увеличить - пронзительно завизжит, басы танут тусклыми и слабыми.…
(А.А.Вайнер, Г.А.Вайнер Визит к Минотавру)

В статье выяснили, чем хороши различные типы акустического оформления и чем плохи. Казалось бы, теперь "цели ясны, за работу, товарищи.." Не тут-то было. Во-первых, акустическое оформление, в которое не установлен собственно динамик - всего лишь с той или иной степенью тщательности собранная коробка. А зачастую и собрать-то ее нельзя, пока не будет определено, какой динамик окажется в нее установлен. Во-вторых, и в этом главная потеха в проектировании и изготовлении автомобильных сабвуферов — характеристики сабвуфера немногого стоят вне контекста характеристик, хотя бы самых основных, автомобиля, где он будет работать. Есть еще и в-третьих. Мобильная акустическая система, одинаково приспособленная для любой музыки — редко достигаемый идеал. Грамотного установщика можно узнать обычно по тому, что, "снимая показания" с клиента, заказывающего аудиоустановку, он просит принести образцы того, что клиент будет слушать на заказанной им системе после ее завершения.

Как видно, факторов, влияющих на решение - очень много и свести все к простым и однозначным рецептам нет никакой возможности, что и превращает создание мобильных аудиоустановок в занятие сильно родственное искусству. Но некоторые общие ориентиры наметить все же можно.

  • Предыдущая

Акустическое оформление в виде закрытого ящика можно рассматривать как предельный случай ящика-фазоинвертора с бесконечно малым отверстием. Эквивалентная акустическая схема низкочастотной головки в закрытом ящике может быть получена, если в схеме рис. 3 отбросить элементы, относящиеся к инвертору. Соответствующая частотная характеристика громкоговорителя совпадает с уравнением (17) при y3 = y4 = 0.

Среди множества типов частотных характеристик, которые могут быть получены для громкоговорителя в виде закрытого ящика. Наибольший интерес представляют гладкие частотные характеристики Баттерворта второго порядка. Эти характеристики образуются при условии выполнения соотношений между параметрами головки и ящика, выраженных уравнением (27) при f b /f s = 0. Особенностью громкоговорителей с частотными характеристиками Баттерворта второго порядка является то обстоятельство, что частота среза f 3 (29) совпадает с резонансной частотой головки в ящике f c .

Графическое представление уравнений (27) и (29) образует номограмму для расчета громкоговорителей с акустическим оформлением в виде закрытого ящика. На рис. 17 в прямоугольной системе координат изображены зависимости отношений V as /V , f 3 /f s , f c /f s в функции от Qt. Методика расчета акустического оформления громкоговорителя с известной частотой среза или с ящиком известных размеров полностью подобна методике для громкоговорителей в виде ящика-фазоинвертора. Номограмма построена для громкоговорителя без потерь в акустическом оформлении (Qb = бесконечность), однако практически с удовлетворительной точностью ею можно пользоваться при условии Q b >10.

Частичное заполнение (до 20% объема) закрытого ящика поглощающим материалом с целью подавления стоячих волн и улучшения неравномрсности частотной характеристики на средних частотах мало влияет на Qb. Помимо сглаживания частотной характеристики, подглушение оказывается полезным еще и в том отношении, что за счет изменения закона сжатия и разрежения воздуха при колебаниях в звукопоглощающем материале происходит увеличение эффективного объема ящика (уменьшение измеряемого отношения Vas/V). Это дает возможность по сравнению с незаполненным ящиком получать частотную характеристику с более низкой частотой среза или одну и ту же частоту среза в меньшем по размерам оформлении. Чрезмерно плотное заполнение ящика поглощающим материалом приводит к обратному результату — уменьшению эффективного внутреннего объема за счет механического вытеснения воздуха и одновременно к росту потерь в ящике. Современные тенденции в построении громкоговорителей с закрытыми ящиками заключаются в использовании головок с низкой резонансной частотой и большой гибкостью подвижной системы. Для таких громкоговорителей отношение Vas/V больше или равно 3, а частота среза в 2 раза и более превышает собственную резонансную частоту головки в свободном воздухе.

Закрытый ящик и ящик-фазоинвертор являются в настоящее время самыми распространенными типами акустических оформлений громкоговорителей. Сравнительный анализ показывает, что каждый из них имеет свои преимущества и недостатки.

К преимуществам громкоговорителя с закрытым ящиком относят плавный спад частотной характеристики в сторону низких частот (12 дБ на октаву для закрытого ящика и 18 дБ на октаву для ящика-фазоинвертора). Более плавный спад частотной характеристики обеспечивает меньшие переходные искажения.

К преимуществам громкоговорителя, выполненного в виде ящика-фазоинвертора, можно отнести следующие.

При прочих равных условиях в области самых низких частот к. п. д. громкоговорителя оказывается на 3 дБ выше, чем для закрытого оформления. Этот выигрыш в эффективности может быть переведен в преимущество в частоте среза или объеме оформления. Так, при одинаковых к. п. д. и объемах оформлений громкоговоритель в виде ящика-фазоинвертора будет иметь более низкую частоту среза, а при равных к. п. д. и частотах среза — меньший объем оформления.

Из-за лучшего согласования головки громкоговорителя со средой амплитуда подвижной системы в области частоты резонанса громкоговорителя оказывается во много раз меньшей, чем у закрытого ящика. Это означает, что при равной излучаемой мощности громкоговоритель в виде ящика-фазоинвертора имеет меньшие нелинейные искажения.

В автозвуке существует множество вариантов акустических оформлений коробов. Поэтому многие новички не знают, что выбрать лучше всего. Наиболее популярные виды коробов для сабвуфера – это закрытый ящик и фазоинвертор.

А также существуют такие оформления, как бандпасс, четвертьволновый резонатор, фриэир и другие, но при построении систем они применяются крайне редко по разным причинам. Решать, какой выбрать короб для сабвуфера должен сам владелец динамика исходя из требований к звучанию и опыта.

Закрытый ящик

Данный тип оформления самый простой. Закрытый ящик для сабвуфера несложно рассчитать и собрать. Его конструкция представляет собой короб из нескольких стенок, чаще всего из 6.

Преимущества ЗЯ:

  1. Несложный расчет;
  2. Несложная сборка;
  3. Маленький литраж готового короба, а следовательно компактность;
  4. Хорошие импульсивные характеристики;
  5. Быстрый и четкий бас. Хорошо отыгрывает клубные треки.

Недостаток у закрытого ящика всего один, но он порой является решающим. У данного типа оформления очень низкий уровень КПД относительно других коробов. Закрытый ящик не подойдет для тех, кому хочется высокого звукового давления.

Однако он подойдет для любителей рока, клубной музыки, джаза и подобного. Если человеку хочется баса, но нужно место в багажнике, то закрытый ящик – это идеальный вариант. Закрытый ящик будет плохо играть если выбран неправильный объем. Какой объём короба нужен для данного типа оформления уже давно решили опытные люди в автозвуке путем вычислений и экспериментов. Выбор объема будет зависеть от размера сабвуферного динамика.

Чаще всего встречаются динамики таких размеров: 6, 8, 10, 12, 15, 18 дюймов. Но также можно найти динамики других размеров, как правило в инсталляциях они используются очень редко. Сабвуферы диаметром 6 дюймов выпускаются несколькими компаниями и в инсталляциях также встречаются редко. В основном люди выбирают динамики диаметром 8-18 дюймов. Некоторые люди указывают диаметр сабвуферного динамика в сантиметрах, что не совсем правильно. В профессиональном автозвуке принято выражать размеры в дюймах.

  • для 8-дюймового сабвуфера (20 см) требуется 8-12 литров чистого объема,
  • для 10-дюймового (25 см) 13-23 литров чистого объема,
  • для 12-дюймового (30 см) 24-37 литров чистого объема,
  • для 15-дюймового (38 см) 38-57- литров чистого объема
  • а для 18-дюймового (46 см) потребуется 58-80 литров.

Литраж дан приблизительно, так как для каждого динамика нужно выбирать определенный объем, исходя из его характеристик. Настройка закрытого ящика будет зависеть от его объема. Чем больше объем короба, тем меньше будет частота настройки короба, бас получится более мягкий. Чем объем короба меньше, тем частота короба будет выше, бас получится более чёткий и быстрый. Не стоит слишком увеличивать или убавлять объем, так как это чревато последствиями. При расчёте короба придерживайтесь объёму который был указа выше Если будет перебор объема, то бас получится расплывчатым, нечетким. Если объема не будет хватать, то бас будет очень быстрым и «долбить» по ушам в худшем смысле этого слова.

От настройки короба зависит многое, но не менее важный момент - это « ».

Фазоинвертор

Данный тип оформления довольно сложнее рассчитать и построить. Его конструкция значительно отличается от закрытого ящика. Однако у него есть преимущества, а именно:

  1. Высокий уровень КПД. Фазоинвертор будет воспроизводить низкие частоты намного громче, чем закрытый ящик;
  2. Несложный расчет корпуса;
  3. Перенастройка в случае необходимости. Это особенно важно для новичков;
  4. Хорошее охлаждение динамика.

Также фазоинвертор имеет и недостатки, число которых больше, чем у ЗЯ. Итак, минусы:

  • ФИ громче, чем ЗЯ, но бас здесь уже не такой четкий и быстрый;
  • Размеры ФИ короба гораздо больше по сравнению с ЗЯ;
  • Большой литраж. Из-за этого готовый короб будет занимать больше места в багажнике.

Исходя из преимуществ и недостатков можно понять, где используются ФИ короба. Чаще всего их используют в инсталляциях, где необходим громкий и выраженный бас. Фазоинвертор подойдет для слушателей любого репа, электронной и клубной музыки. А также он подойдет для тех, кому не нужно свободное место в багажнике, так как короб будет занимать почти все пространство.


ФИ короб поможет получить больше баса, чем в ЗЯ от динамика маленького диаметра. Однако для этого потребуется гораздо больше места.

Какой объем короба требуется для фазоинвертора?

  • для сабвуфера диаметром 8 дюймов (20 см) понадобится 20-33 литров чистого объёма;
  • для 10-дюймового динамика (25 см) – 34-46 литров,
  • для 12-дюймового (30 см) – 47-78 литров,
  • для 15-дюймового (38 см) – 79-120 литров
  • и для 18-дюймового сабвуфера (46 см) нужно 120-170 литров.

Как и в случае с ЗЯ, здесь даны неточные цифры. Однако в ФИ корпусе можно «играть» с объемом и брать значение меньше рекомендуемых, выясняя при каком объеме сабвуфер играет лучше. Но не стоит слишком сильно увеличивать или ужимать объем, это может привести к потере мощности и выходу динамика из строя. Лучше всего опираться на рекомендации производителя сабвуфера.

От чего зависит настройка ФИ короба

Чем больше объем короба, тем меньше будет частота настройки, скорость баса уменьшается. Если же нужна частота повыше, то объем необходимо уменьшить. Если у вас номинальная мощность усилителя превышает номинал динамика, то объём рекомендуется делать поменьше. Это нужно для того, чтобы распределить нагрузку на динамик и исключить его превышение хода. Если же усилитель слабее динамика то объём короба рекомендуем сделать чуть больше. Это компенсирует громкость из-за недостачи мощности.


Площадь порта также должна зависеть от объема. Средние значения площади порта динамиков следующие:

для 8-дюймового сабвуфера потребуется 60-115 кв.см,

для 10-дюймового – 100-160 кв.см,

для 12-дюймового – 140-270 кв.см,

для 15-дюймового – 240-420 кв.см,

для 18-дюймового – 360-580 кв.см.
Длинна порта так же влияет на частоту настройки сабвуферного короба, чем длиннее будет порт тем ниже настройка короба, чем короче порт соответственно частота настройки выше. При расчете короба для сабвуфера прежде всего необходимо ознакомиться с характеристиками динамика и рекомендуемыми параметрами корпуса. В некоторых случаях производитель рекомендует совершенно иные параметры короба, чем те, которые даны в статье. Динамик может иметь нестандартные характеристики, из-за чего он будет требовать определенного короба. Такие сабвуфер чаще всего встречаются у компаний-производителей Kicker и DD. Однако у других производителей такие динамики также имеются, но в гораздо меньших количествах.

Объёмы даны примерные, от и до. Он в зависимости от динамика будут отличаться, но как правило они будут находиться в одной и той же вилке… К примеру для 12 дюймового сабвуфера это 47-78 литров а порт будет от 140 до 270 кв. см, а как более подробно рассчитать объём, всему этому мы будем учиться в последующих статьях. Надеемся что данная статья ответила вам на ваш вопрос, если у вас есть замечания или предложения вы можете оставить свой комментарий ниже.

Информация которую вы узнали отлично подойдет для тех .

На камне выбито: одна из фундаментальных зависимостей электроакустики запрещает одновременно увеличивать чувствительность и уменьшать нижнюю граничную частоту громкоговорителя и объём оформления. А если не выбито, так надо выбить…

ПРАВИЛА ИГРЫ

Это - к скульпторам. Мне же давно хотелось прояснить, как именно эта зависимость реализуется. Результатам этих прояснений и посвящены эти заметки. Для начала пара предварительных замечаний. Под чувствительностью громкоговорителя повсюду в пределах данного материала (если не сказано иного) будет подразумеваться так называемая опорная чувствительность (reference sensitivity), то есть чувствительность на тех частотах, где амплитудно-частотная характеристика системы имеет более или менее прямолинейный горизонтальный характер, или, как говорят акустики, нормированная частотная характеристика имеет единичное (более или менее) значение. Реальная чувствительность системы в некоторой полосе может быть как выше опорной (если в данной полосе наблюдается акустическое усиление), так и ниже неё (если имеет место спад АЧХ). В большинстве формул, однако, вместо чувствительности фигурирует значение КПД (опорного КПД) громкоговорителя η (это по-гречески, по-нашему - «эта»), которое связано с чувствительностью SPL простой зависимостью:

(1a) η = 6,026 10 -12 10 SPL/10 ,

(1b) или SPL = 10lg(η/6,026 10 -12)

Один из вариантов записи формулы для вычисления КПД электродинамического преобразователя выглядит так:

(2a) η = 4π 2 Fs 3 Vas/(c 3 Qes)

Здесь, как всегда,
Fs - частота собственного резонанса головки (Гц),

Vas - эквивалентный объём воздуха (м 3),

Qes - электрическая добротность головки,

c - скорость звука в воздухе (334 м/с).

Первый и самый простой вывод, который следует из рассмотрения формулы (2), заключается в том, что один из параметров Тиля - Смолла связан с двумя другими через КПД преобразователя, в частности, для эквивалентного объёма можем записать:

(2b) Vas=c 3 Qes η/(4π 2 Fs 3)

Итак, для головки с фиксированным значением Qes мы можем получить зависимость эквивалентного объёма Vas от аргументов (или SPL) и частоты Fs. Чтобы перейти от Vas к объёму ящика Vb (на данном этапе рассматриваем только закрытый ящик - ЗЯ), потребуется значение целевой добротности головки в ящике Qtc и полной добротности головки на воздухе Qts. Параметр Qtc - это основная характеристика «настройки» ЗЯ. (Мы привыкли к тому, что настраивается только фазоинвертор (ФИ), но сочетание параметров Qtc и нижней частотной границы ЗЯ тоже можно и даже принято называть настройкой.) В частности, для настройки Баттерворта Qtc = 0,707, для Бесселя 0,577. Настройки Чебышева тоже существуют, в зависимости от величины допустимого выброса на АЧХ (0,5 или 1 дБ) добротность Qtc может быть 0,86 или 0,95. Можно показать, что объём ящика Vb связан с эквивалентным объёмом Vas зависимостью:

(3) Vb = Vas Qts 2 /(Qtc 2 — Qts 2).

Теперь нам надо связать частоту резонанса головки в ящике Fc с частотой собственного резонанса (на воздухе) Fs. Для этого тоже существует соответствующая формула:

(4) Fc = Fs Qtc/Qes.

Наконец, значение частоты, соответствующей нижней частотной границе громкоговорителя по уровню -3 дБ (обозначается как F3), с частотой Fc связано жёстко, через константу k, которая известна для каждой настройки:

(k может быть как больше, так и меньше единицы, в частности, для Баттерворта k = 1,0.)

Добротность Qts связана с Qes через добротность Qm механических потерь в подвесе и в ящике известным соотношением:

(6) Qts = Qes Qm/(Qes + Qm).

Предположим сначала, что механические потери отсутствуют, Qm >> Qes, и тогда Qts = Qes. (Такое предположение можно считать обоснованным для головок с Qes не больше 0,3, имеющих добротность механических потерь не меньше 3,0.) Позже посмотрим, как меняется объём ящика, когда добротность потерь становится сравнимой с электрической добротностью. Как и всегда, в качестве отправной точки берём ЗЯ с баттервортовской добротностью. На первом рисунке приведены графики полученной зависимости для Qes, равной 0,2, 0,4 и 0,6.

Рис. 1. ЗЯ с полной добротностью Qtc = 0,707:



Для нас с вами практической пользы от таких графиков не очень много - какой смысл говорить о ящиках объёмом 1 - 5 кубометров, когда у нас объём салона в лучшем случае около трёх кубов? Действительно, счёт объёма ящика идёт на кубометры, если задаёмся чувствительностью 100 дБ и нижней частотной границей 16 Гц, мы с вами такие задачи перед собой не ставим, и теперь хорошо видно, почему и ставить их не надо. До практических результатов ещё доберёмся. В частности, мы видим, что функция монотонна относительно каждого аргумента (SPL и F3), то есть не существует такой области значений аргументов, где удалось бы уменьшить объём ящика, не проигрывая в протяжённости полосы по басам либо в чувствительности системы.

А вот теперь уже можно задаться вопросом: а как изменится объём ящика при наличии механических потерь? Поскольку рассмотрение всех вероятных сочетаний электрической и механической добротности выходит далеко за пределы любой журнальной статьи, надо было выбрать какое-то типичное значение механической добротности Qm. В результате обработки статистики, набранной нами в ходе многочисленных тестов, было получено осреднённое значение 3,3. Примерно такую же (3,333) величину механической добротности можно получить при использовании головки с механической добротностью 5 и добротностью потерь в ящике 10. Значение Qm = 3,333 было принято для дальнейших расчётов. На рис. 2 вы можете увидеть зависимости для объёма ЗЯ с учётом добротности потерь.

Рис. 2. ЗЯ с добротностью потерь 3,33 и полной добротностью Qtc = 0,707:


Расчёты показали, что учёт механических потерь приводит, как правило, к увеличению объёма ящика. Но зависимость эта нелинейная, и в тех случаях, когда электрическая добротность Qes приближается к «ящичной» добротности Qtc (в нашем случае - 0,6 и 0,707), присутствие потерь позволяет несколько выиграть в величине объёма. Правда, даже в этом случае ящики получаются значительно более объёмистыми, нежели для головок с низкой Qes, и если мы хотим узнать размеры минимально возможных ящиков для каждого значения добротности Qes, наличие потерь надо будет учитывать. К практическим реализациям мы перейдём чуть позже, но уже сейчас можно сделать некоторые предварительные выводы.

  1. Головки с высокой полной добротностью (Qts > 0,5) малопригодны для работы в компактном оформлении.
  2. При изменении граничной частоты на 1/3 октавы потребный объём ящика меняется вдвое (ну то есть как бы на октаву).
  3. То же происходит с объёмом ящика при изменении потребной чувствительности на 3 дБ.

Теперь уже можно оставить настройку Баттерворта позади и спросить: а как будет меняться объём ящика при сохранении значений всех аргументов, но при изменении добротности Qtc? Расчёты дали простой ответ: чем выше добротность, тем компактнее ящик. А значит, чтобы получить параметры «минимально возможного» ящика, надо задаться некоторыми ограничениями. И тут нам уже не обойтись без использования «стандартной» передаточной функции салона (она же «функция АвтоЗвука»). С привлечением к работе этой функции возникают следующие любопытные закономерности (мы продолжаем нумерацию).

  1. С ростом добротности Qtc и минимальной неравномерности АЧХ объём ящика уменьшается.
  2. В диапазоне значений полной добротности Qtc от 0,4 до 0,67 неравномерность АЧХ в салоне может быть выдержана не выше 0,4 - 0,6 дБ.
  3. При более высокой и более низкой добротности Qtc неравномерность АЧХ в салоне растёт.

При тестировании сабвуферов мы исходим из того, что неравномерности АЧХ менее 2 дБ (в диапазоне 25 - 100 Гц) достаточно для получения высшей оценки за форму частотной характеристики (сама эта рекомендация была получена на основе практики). Тогда для ящика с минимальным объёмом зададимся неравномерностью 1,9 дБ и получим настройку с такими параметрами:

Qtc = 0,80; Fc = 70,1 Гц (F3 = 63 Гц).

Вот для неё мы уже можем строить графики для практического применения. Обратите внимание, для головки с добротностью 0,6 также учтены механические потери в подвижной системе и ящике (рис. 3).

Рис. 3. Графики распределения объёмов ЗЯ с Qtc = 0,80 и Fc = 70 Гц

Для удобства ниже приводится таблица 1, в которую включены все те значения, на основании которых построены графики, показанные выше.

Таблица 1 . Объёмы ЗЯ с неравномерностью АЧХ в салоне 1,9 дБ

SPL, дБ Qes = 0,20 Qes = 0,30 Qes = 0,40 Qes = 0,50 Qes = 0,60
80 1,369 1,493 1,711 2,106 2,754
81 1,723 1,880 2,154 2,651 3,467
82 2,170 2,367 2,712 3,338 4,364
83 2,731 2,980 3,414 4,202 5,494
84 3,439 3,751 4,298 5,290 6,917
85 4,329 4,722 5,411 6,660 8,708
86 5,450 5,945 6,812 8,384 10,96
87 6,861 7,485 8,576 10,55 13,80
88 8,637 9,423 10,80 13,29 17,37
89 10,87 11,86 13,59 16,73 21,87
90 13,69 14,93 17,11 21,06 27,54
91 17,23 18,80 21,54 26,51 34,67
92 21,70 23,67 27,12 33,38 43,64
93 27,31 29,80 34,14 42,02 54,94
94 34,39 37,51 42,98 52,90 69,17
95 43,29 47,22 54,11 66,60 87,08
96 54,50 59,45 68,12 83,84 109,6
97 68,61 74,85 85,76 105,5 138,0
98 86,37 94,23 108,0 132,9 173,7
99 108,7 118,6 135,9 167,3 218,7
100 136,9 149,3 171,1 210,6 275,4

Как нетрудно заметить, в таблице достаточно было бы привести значения для диапазона, перекрывающего лишь 10 дБ разброса чувствительности SPL, остальные значения получаются путём переноса десятичной запятой. Скажем, объём ящика для SPL 90 дБ в десять раз больше, нежели для значения SPL, равного 80 дБ. Указанная закономерность, впрочем, напрямую связана с тем высказыванием, которое было выше приведено под номером 3.

С закрытым ящиком как будто всё ясно. С фазоинверторным оформлением, как обычно, несколько сложнее. Начнём с того, что не так уж просто понять, какую именно настройку считать наиболее компактной. В ходе математических экспериментов проявились следующие зависимости.

  1. Чем выше добротность головки в ящике Qtc, тем меньший выигрыш по ширине полосы даёт ФИ по сравнению с ЗЯ. По этой причине настройки с добротностью Qtc > 0,707, как нам представляется, смысла не имеют.
  2. Оформление с ФИ при той же граничной частоте F3 всегда компактнее, чем ЗЯ, когда на десятки процентов, а когда и в три-четыре раза.

Последнее утверждение кажется на первый взгляд несколько неожиданным - по нашему опыту, ящик с ФИ всегда объёмистее, чем ЗЯ. Как разрешается это противоречие, мы увидим чуть позже, а пока идём дальше. Те же математические эксперименты показали, что почти все настройки, известные из классической литературы (для свободного поля), в условиях автомобильного салона проявляют себя не наилучшим образом. Исключение составляет лишь настройка, известная по работам г-на Тиля как «максимально ровная настройка» Баттерворта четвёртого порядка (B4). При надлежащем выборе частоты настройки ящика Fc (не частоты настройки фазика Fb, а частоты резонанса головки в ящике, на импедансной кривой это - верхний горб двугорбой кривой) результирующая АЧХ в салоне становится подозрительно похожей на нашу «нормированную» АЧХ, которую мы стремимся построить при тестировании сабвуферов, правда с шириной полосы немного больше, чем «наши» 4/3 октавы. Так что для расчёта опорной настройки для расчётов мы взяли за основу именно нашу «стандартную» АЧХ с величиной среднего акустического усиления 4,0 дБ. Вернее говоря, задача стояла обратная: найти такую настройку (сочетание Qtc, Fc и Fb), при которой АЧХ в салоне будет иметь максимум на 35 Гц, а ширина полосы по уровню -3 дБ составит 4/3 октавы. Откуда взялась величина усиления 4 дБ? Дело в том, что при анализе предварительных результатов было сформировано следующее правило.

  1. Чем меньшее акустическое усиление обеспечивает оформление с ФИ, тем более компактным получается ящик.

Ну а 4 дБ - это практически минимальное значение акустического усиления из того, что мы получаем в наших тестах. (Обтекаемое выражение «практически минимальное» означает, что нам встречались показатели и немного ниже, но при этом было очевидно, что данная головка для работы в ФИ совсем не приспособлена.)

Итак, «минимальная настройка» имеет следующие параметры. Qtc = 0,58, Fc = 53 Гц, Fb = 32,6 Гц. Частота F3, измеренная по свободному полю, составляет 37,3 Гц.

Вот тут и открылась страшная тайна: наши ящики с ФИ выходят больше потому, что у них нижняя граничная частота по свободному полю должна быть значительно ниже, чем у ЗЯ - чтобы в салоне получились сравнимые результаты.

Теперь, используя все те же зависимости, можем построить аналогичные зависимости и для ФИ (рис. 4).

Рис. 4. Графики распределения объёмов ящиков с ФИ: с Qtc = 0,58, Fc = 53 Гц, Fb = 32,6 Гц

Обратите внимание, за основу для построения двух последних графиков были выбраны зависимости для оформления (и головок) с потерями, поскольку ящики получались чуть более компактными. И тоже для удобства пользования все данные мы свели в таблицу 2. Цветом выделена область значений функции, не превышающих 85 л (три «кубика»).

Таблица 2 . Объёмы ящика с ФИ, имеющегоо стандартизованную форму АЧХ

SPL Qes = 0,20 Qes = 0,30 Qes = 0,40 Qes = 0,50
80 2,451 2,949 3,896 5,669
81 3,086 3,712 4,905 7,137
82 3,885 4,673 6,175 8,985
83 4,891 5,883 7,774 11,31
84 6,157 7,407 9,786 14,24
85 7,751 9,325 12,32 17,93
86 9,758 11,74 15,51 22,57
87 12,28 14,78 19,53 28,41
88 15,47 18,61 24,58 35,77
89 19,47 23,42 30,95 45,03
90 24,51 29,49 38,96 56,69
91 30,86 37,12 49,05 71,37
92 38,85 46,73 61,75 89,85
93 48,91 58,83 77,74 113,1
94 61,57 74,07 97,86 142,4
95 77,51 93,25 123,2 179,3
96 97,58 117,4 155,1 225,7
97 122,8 147,8 195,3 284,1
98 154,7 186,1 245,8 357,7
99 194,7 234,2 309,5 450,3
100 245,1 294,9 389,6 566,9

Из сравнения данных таблиц 1 и 2 нетрудно заключить, что все без исключения ящики с ФИ имеют больший объём, нежели соответствующие ЗЯ. Тогда, спрашивается, ради чего огород городить? Чтобы найти ответ на этот вопрос, попробуем учесть акустическое усиление и прибавить к данным первого столбца те самые 4 дБ. А результат для ФИ и ЗЯ сведём в общую таблицу 3.

Таблица 3 . Сравнение объёмов ЗЯ и ФИ

Закрытый ящик Ящик с ФИ (АЗ1)
SPL, дБ Qes = 0,20 Qes = 0,30 Qes = 0,40 Qes = 0,50 Qes = 0,20 Qes = 0,30 Qes = 0,40 Qes = 0,50
84 3,439 3,751 4,298 5,290 2,451 2,949 3,896 5,669
85 4,329 4,722 5,411 6,660 3,086 3,712 4,905 7,137
86 5,450 5,945 6,812 8,384 3,885 4,673 6,175 8,985
87 6,861 7,485 8,576 10,55 4,891 5,883 7,774 11,31
88 8,637 9,423 10,80 13,29 6,157 7,407 9,786 14,24
89 10,87 11,86 13,59 16,73 7,751 9,325 12,32 17,93
90 13,69 14,93 17,11 21,06 9,758 11,74 15,51 22,57
91 17,23 18,80 21,54 26,51 12,28 14,78 19,53 28,41
92 21,70 23,67 27,12 33,38 15,47 18,61 24,58 35,77
93 27,31 29,80 34,14 42,02 19,47 23,42 90,95 45,03
94 34,39 37,51 42,98 52,90 24,54 29,49 38,96 56,69
95 43,29 47,22 54,11 66,60 30,86 37,12 49,05 71,37
96 54,50 59,45 68,12 83,84 38,85 46,73 61,75 89,85
97 68,61 74,85 85,76 105,5 48,91 58,53 77,74 113,1
98 86,37 94,23 1108,0 132,9 61,57 74,07 97,86 142,4
99 108,7 118,6 135,9 167,3 77,51 93,25 123,2 179,3
100 136,9 149,3 171,1 210,6 97,58 117,4 155,1 225,7

Как можно заметить, с учётом такой поправки фазику удаётся отыграть некоторое количество объёма (9 - 29%) у закрытого ящика. Исключение составляет только вариант с добротностью головки 0,50; как было уже сказано, головки с высокой добротностью мало приспособлены для работы в ФИ.

Что будет, если выбрать настройку с акустическим усилением не 4 дБ, а меньше или, наоборот, больше? Чем меньше усиление, тем физически меньший вклад в излучение вносит фазоинвертор и тем объём такого оформления ближе к объёму ЗЯ. Чем больше усиление, тем больше объём ящика с ФИ, но тем больший выигрыш в объёме (по сравнению с ЗЯ) он даёт с учётом акустического усиления. Получается так: если конструктор акустики, работающей в условиях свободного поля, платит относительным усложнением конструкции за снижение нижней частотной границы, то создатель акустики, работающей в компрессионной среде, платит той же монетой за сокращение объёма ящика. Одновременно с наращиванием акустического усиления, конечно же, увеличивается неравномерность АЧХ. Однако рост этой неравномерности не столь важен, поскольку происходит за пределами того диапазона (4/3 октавы), который нас интересует.

В своём стремлении выявить закономерности для установления объёмов оформления мы совершенно не касались немаловажного вопроса о реализуемости ящиков в данных конкретных объёмах с использованием тех или иных головок. Подробное рассмотрение этих закономерностей выходит за рамки любого одиночного журнального материала. Однако если ввести в рассмотрение ограничения по возможным значениям объёма ящика Vb, а также параметров Vas и Mas (масса подвижной системы) в зависимости от типоразмера, плюс ограничения на величину силового фактора Bl (уже вне зависимости от типоразмера), то можно получить любопытные результаты.

Идём снизу. Головки калибра 8 дюймов позволяют перекрыть примерно 2/3 диапазона по SPL снизу вверх (по нашей таблице получается наоборот, сверху вниз), то есть от 80 и до 94 дБ/Вт. Причём для головок с более высокой Qes «область покрытия» шире, чем у «восьмёрок» с мощным магнитом и, соответственно, низкой добротностью. Кстати, это общая закономерность: с учётом конструктивных ограничений область применения головок с низкой электрической добротностью смещается вниз, то есть в область более высокой чувствительности и большего объёма ящика.

Теперь переходим к наиболее известному в нашей отрасли (хотя и редкому) калибру 18 дюймов. Совершенно очевидно, что ящики на головках с такими статями оккупируют нижнюю часть таблицы - с большими объёмами и соответствующей чувствительностью. Головки с добротностью 0,2, как оказалось, вообще нереализуемы (мы же с вами не раз отмечали, что чем больше калибр, тем выше (на круг) добротность). Головки с добротностью 0,3 позволяют построить ящик с чувствительностью не ниже 97 дБ/Вт, но и объём там будет нешуточный. (Если у неё чувствительность ниже, значит, сабвуферы с «правильной» формой АЧХ на них не получаются, но они, наверное, и не для того создаются, по крайней мере в нашей отрасли.) Головки с добротностью выше 0,4 и дальше позволяют работать с опорной чувствительностью от 96 дБ/Вт и выше.

«Пятнашки» с добротностью около 0,20 - редкость чрезвычайная, один из таких раритетов нам недавно встретился «на ковре». На них реализуются ЗЯ с чувствительностью 92 - 94 дБ/Вт, и всё тут. По крайней мере так у меня получилось. Головки с более высокой добротностью покрывают более широкую область - от тех же 92 дБ/Вт и дальше.

Наконец, головки калибра 12 и 10 дюймов совместно перекрывают 3/4 диапазона, не вторгаясь лишь в область 84 дБ/Вт и ниже и оставив свободными ячейки с чувствительностью 100 дБ/Вт и немного ниже.

Может возникнуть вопрос: а что будет, если головки играют не по нашим правилам, в частности, чувствительность у них ниже, нежели положено? Это будет означать, что параметры головки не позволяют уложить АЧХ в заданный допуск 1,9 дБ при заданном объёме ящика. То есть либо ящик будет больше, либо же АЧХ будет иметь более высокую неравномерность. Так что приведённой выше таблицей можно пользоваться в качестве универсального определителя минимального объёма ящика. Правда, сказанное относится только к закрытому ящику, для фазоинвертора зависимости уже не столь однозначны.